scholarly journals Contributions of dynamic environmental signals during life-cycle transitions to early life-history traits in lodgepole pine (<i>Pinus contorta</i> Dougl.)

2016 ◽  
Vol 13 (10) ◽  
pp. 2945-2958 ◽  
Author(s):  
Yang Liu ◽  
Tongli Wang ◽  
Yousry A. El-Kassaby

Abstract. Environmental signals are important triggers in the life-cycle transitions and play a crucial role in the life-history evolution. Yet very little is known about the leading ecological factors contributing to the variations of life-history traits in perennial plants. This paper explores both the causes and consequences for the evolution of life-history traits (i.e., seed dormancy and size) in lodgepole pine (Pinus contorta Dougl.) across British Columbia (B.C.), Canada. We selected 83 logepole pine populations covering 22 ecosystem zones of B.C. and through their geographic coordinate, 197 climatic variables were generated accordingly for the reference (1961–1990) and future (2041–2070) periods. We found that dynamic climatic variables rather than constant geographic variables are the true environmental driving forces in seed dormancy and size variations and thus provide reliable predictors in response to global climate change. Evapotranspiration and precipitation in the plant-to-seed chronology are the most critical climate variables for seed dormancy and size variations, respectively. Hence, we predicted that levels of seed dormancy in lodgepole pine would increase across large tracts of B.C. in 2050s. Winter-chilling is able to increase the magnitude of life-history plasticity and lower the bet-hedge strategy in the seed-to-plant transition; however, winter-chilling is likely to be insufficient in the north of 49° N in 2050s, which may delay germination while unfavorable conditions during dry summers may result in adverse consequences in the survival of seedlings owing to extended germination span. These findings provide useful information to studies related to assessments of seed transfer and tree adaptation.

2015 ◽  
Vol 12 (16) ◽  
pp. 14105-14138 ◽  
Author(s):  
Y. Liu ◽  
T. Wang ◽  
Y. A. El-Kassaby

Abstract. Environmental signals are important triggers in the life-cycle transitions and play a crucial role in the life-history evolution. Yet, very little is known about the leading ecological factors contributing to the variations of life-history traits in perennial plants. This paper explores both the causes and consequences for the evolution of life-history traits (i.e., seed dormancy and size) in lodgepole pine (Pinus contorta Dougl.) across British Columbia (B.C.), Canada. We selected 83 logepole pine populations covering 22 ecosystem zones of B.C. and through their geographic coordinate, 197 climatic variables were generated accordingly for the reference (1961–1990) and future (2041–2070) periods. We found that dynamic climatic variables rather than constant geographic variables are the true environmental driving forces in seed dormancy and size variations and thus provide reliable predictors in response to global climate change. Evapotranspiration and precipitation in the plant-to-seed chronology are the most critical climate variables for seed dormancy and size variations, respectively. Hence, we predicted that levels of seed dormancy in lodgepole pine would increase across large tracts of B.C. in 2050s. Winter-chilling is able to increase the magnitude of life-history plasticity and lower the bet-hedge strategy in the seed-to-plant transition; however, winter-chilling is likely to be insufficient in the north of 49° N in 2050s, which may delay germination while unfavourable conditions during dry summers may result in adverse consequences in the survival of seedlings owing to extended germination span.


1998 ◽  
Vol 130 (4) ◽  
pp. 387-397 ◽  
Author(s):  
David W. Langor ◽  
Daryl J.M. Williams

AbstractThe seasonal life history and mortality of the lodgepole terminal weevil, Pissodes terminalis Hopping (Coleoptera: Curculionidae), were investigated in young lodgepole pine, Pinus contorta Douglas var. latifolia Engelmann (Pinaceae), at three sites in west-central Alberta. Flight was monitored with traps. Development and mortality of all stages were investigated by dissecting infested leaders biweekly from late spring to early fall. Two years were required for P. terminalis to complete its life cycle, and generations overlapped. Overwintered adults emerged from the duff and commenced flight in late May, with a peak in mid-June. Eggs were present from mid-June to late July. There were four larval instars. The first two instars fed only in the phloem. Third and fourth larval instars eventually entered the pith to continue feeding, overwinter, and complete development the following spring. The new generation of adults emerged between mid-July and early August, fed on new shoots for several weeks, and overwintered in the duff. Adults have an obligatory diapause and did not reproduce until after winter. Fourth larval instars suffered the highest mortality. The major attributable cause of mortality was resinosis among eggs and young larvae and cold temperatures during the winter among mature larvae. Pathogens caused little mortality. Six species of parasitoids were collected.


2009 ◽  
Vol 141 (1) ◽  
pp. 56-69 ◽  
Author(s):  
G.D. Smith ◽  
A.L. Carroll ◽  
B.S. Lindgren

AbstractPseudips mexicanus (Hopkins) is a secondary bark beetle native to western North and Central America that attacks most species of pine (Pinus L. (Pinaceae)) within its range. A pair of life-history studies examined P. mexicanus in other host species, but until now, no work has been conducted on lodgepole pine (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson). Pseudips mexicanus in lodgepole pine was found to be polygynous. Galleries were shorter, offspring smaller, and the eggs laid per niche and the potential progeny fewer than in populations from California and Guatemala. Development from the time of female attack to emergence of adult offspring took less than 50 days at 26.5 °C, and the accumulated heat required to complete the life cycle was determined to be 889.2 degree days above 8.5 °C, indicating that in the northern portion of its range P. mexicanus is univoltine. Determination of these life-history traits will facilitate study of interactions between P. mexicanus and other bark beetle associates in lodgepole pine.


1996 ◽  
Vol 128 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Cameron R. Currie ◽  
John R. Spence ◽  
W. Jan A. Volney

AbstractThe life cycle, phenology, and abundance of Epuraea obliquus Hatch was studied near Hinton, Alberta. Most of the life cycle occurs on galls of Endocronartium harknessii (J.P. Moore) Y. Hiratsuka (western gall rust) infecting lodgepole pine (Pinus contorta Dougl. var latifolia Engelm.). Both adults and larvae feed on the spores of the fungus. Individuals of this beetle were found on most galls sampled. Adults overwinter in the soil. They emerge in the spring to seek out and colonize galls. Eggs are laid on the surface of galls, mainly under the periderm, and larvae feed on the fungus, developing through three larval instars. Larvae in the last instar drop from galls to pupate in the soil. Adults leave the soil in late summer and return to feed on inactive galls before overwintering in the soil. The phenology of E. obliquus is closely synchronized with the timing of rust sporulation and the impact of beetle feeding may be an important natural control of western gall rust.


Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S47-S55 ◽  
Author(s):  
J. C. Koella ◽  
P. Agnew ◽  
Y. Michalakis

SummarySeveral recent studies have discussed the interaction of host life-history traits and parasite life cycles. It has been observed that the life-history of a host often changes after infection by a parasite. In some cases, changes of host life-history traits reduce the costs of parasitism and can be interpreted as a form of resistance against the parasite. In other cases, changes of host life-history traits increase the parasite's transmission and can be interpreted as manipulation by the parasite. Alternatively, changes of host's life-history traits can also induce responses in the parasite's life cycle traits. After a brief review of recent studies, we treat in more detail the interaction between the microsporidian parasite Edhazardia aedis and its host, the mosquito Aedes aegypti. We consider the interactions between the host's life-history and parasite's life cycle that help shape the evolutionary ecology of their relationship. In particular, these interactions determine whether the parasite is benign and transmits vertically or is virulent and transmits horizontally.Key words: host-parasite interaction, life-history, life cycle, coevolution.


2021 ◽  
Vol 118 (34) ◽  
pp. e2026212118
Author(s):  
Anurag A. Agrawal ◽  
Amy P. Hastings ◽  
John L. Maron

Dormancy has repeatedly evolved in plants, animals, and microbes and is hypothesized to facilitate persistence in the face of environmental change. Yet previous experiments have not tracked demography and trait evolution spanning a full successional cycle to ask whether early bouts of natural selection are later reinforced or erased during periods of population dormancy. In addition, it is unclear how well short-term measures of fitness predict long-term genotypic success for species with dormancy. Here, we address these issues using experimental field populations of the plant Oenothera biennis, which evolved over five generations in plots exposed to or protected from insect herbivory. While populations existed above ground, there was rapid evolution of defensive and life-history traits, but populations lost genetic diversity and crashed as succession proceeded. After >5 y of seed dormancy, we triggered germination from the seedbank and genotyped >3,000 colonizers. Resurrected populations showed restored genetic diversity that reduced earlier responses to selection and pushed population phenotypes toward the starting conditions of a decade earlier. Nonetheless, four defense and life-history traits remained differentiated in populations with insect suppression compared with controls. These findings capture key missing elements of evolution during ecological cycles and demonstrate the impact of dormancy on future evolutionary responses to environmental change.


2013 ◽  
Vol 34 (3) ◽  
pp. 279-287 ◽  
Author(s):  
Jørgen Berge ◽  
Jasmine Nahrgang

AbstractDuring a cruise to Svalbard in September 2012 a unique collection of the little known but widely distributed Atlantic spiny lumpsucker (Eumicrotremus spinosus) was made in the Hinlopen Strait. A total of 140 individuals (36-101mm total length) were collected using a bottom trawl. All individuals were sexed and 26 of these were also analysed for gonadosomatic index (GSI), hepatosomatic index (HSI) and stomach content. The sex ratio of the entire sample showed a strong bias towards females (75% of all examined specimens). The GSI ranged from 1.4 to 5.8% except for one female with a GSI of 20%. All females carried gonads in which eggs were clearly visible, independent of size, indicative of an early sexual maturation and an iteroparous life cycle of females. All examined specimens had almost an exclusively pelagic diet, with Themisto libellula constituting 100% of the stomach content in 80% of the examined fishes. The results are discussed in relation to diel vertical migration of Arctic zooplankton and deep migrating layers.


2021 ◽  
Author(s):  
E.K. López-Estrada ◽  
I. Sanmartín ◽  
J.E. Uribe ◽  
S. Abalde ◽  
M. García-París

ABSTRACTChanges in life history traits, including reproductive strategies or host shifts, are often considered triggers of speciation, affecting diversification rates. Subsequently, these shifts can have dramatic effects on the evolutionary history of a lineage. In this study, we examine the consequences of changes in life history traits, in particular host-type and phoresy, within the hypermetamorphic clade of blister beetles (Meloidae). This clade exhibits a complex life cycle involving multiple metamorphoses and parasitoidism. Most tribes within the clade are bee-parasitoids, phoretic or non-phoretic, while two tribes feed on grasshopper eggs. Species richness differs greatly between bee and grasshopper specialist clades, and between phoretic and non-phoretic genera. We generated a mitogenomic phylogeny of the hypermetamorphic clade of Meloidae, including 21 newly generated complete mitogenomes. The phylogeny and estimated lineage divergence times were used to explore the association between diversification rates and changes in host specificity and phoresy, using State-Dependent Speciation and Extinction (SSE) models, while accounting for hidden factors and phylogenetic uncertainty within a Bayesian framework. The ancestor of the hypermetamorphic Meloidae was a non-phoretic bee-parasitoid, and independent transitions towards phoretic bee-parasitoidism or grasshopper specialization occurred multiple times. Bee-parasitoid lineages that are non-phoretic have significantly higher relative extinction rates and lower diversification rates than grasshopper specialists or phoretic bee-parasitoids, while no significant differences were found between the latter two strategies. This suggests that these two life strategies contributed independently to the evolutionary success of Nemognathinae and Meloinae, allowing them to escape from the evolutionary constraints imposed by their hypermetamorphic life-cycle, and that the “bee-by-crawling” strategy may be an evolutionary “dead end”. We show how SSE models can be used not only for testing diversification dependence in relation to the focal character but to identify hidden traits contributing to the diversification dynamics. The ability of blister beetles to explore new evolutionary scenarios including the development of homoplastic life strategies, are extraordinary outcomes along the evolution of a single lineage: the hypermetamorphic Meloidae.


Sign in / Sign up

Export Citation Format

Share Document