scholarly journals Characterization of “dead-zone” eddies in the eastern tropical North Atlantic

2016 ◽  
Vol 13 (20) ◽  
pp. 5865-5881 ◽  
Author(s):  
Florian Schütte ◽  
Johannes Karstensen ◽  
Gerd Krahmann ◽  
Helena Hauss ◽  
Björn Fiedler ◽  
...  

Abstract. Localized open-ocean low-oxygen “dead zones” in the eastern tropical North Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic mode-water eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats reveals that “dead-zone” eddies are found in surprisingly high numbers and in a large area from about 4 to 22° N, from the shelf at the eastern boundary to 38° W. In total, 173 profiles with oxygen concentrations below the minimum background concentration of 40 µmol kg−1 could be associated with 27 independent eddies (10 CEs; 17 ACMEs) over a period of 10 years. Lowest oxygen concentrations in CEs are less than 10 µmol kg−1 while in ACMEs even suboxic (< 1 µmol kg−1) levels are observed. The oxygen minimum in the eddies is located at shallow depth from 50 to 150 m with a mean depth of 80 m. Compared to the surrounding waters, the mean oxygen anomaly in the core depth range (50 and 150 m) for CEs (ACMEs) is −38 (−79) µmol kg−1. North of 12° N, the oxygen-depleted eddies carry anomalously low-salinity water of South Atlantic origin from the eastern boundary upwelling region into the open ocean. Here water mass properties and satellite eddy tracking both point to an eddy generation near the eastern boundary. In contrast, the oxygen-depleted eddies south of 12° N carry weak hydrographic anomalies in their cores and seem to be generated in the open ocean away from the boundary. In both regions a decrease in oxygen from east to west is identified supporting the en-route creation of the low-oxygen core through a combination of high productivity in the eddy surface waters and an isolation of the eddy cores with respect to lateral oxygen supply. Indeed, eddies of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The low-oxygen core depth in the eddies aligns with the depth of the shallow oxygen minimum zone of the eastern tropical North Atlantic. Averaged over the whole area an oxygen reduction of 7 µmol kg−1 in the depth range of 50 to 150 m (peak reduction is 16 µmol kg−1 at 100 m depth) can be associated with the dispersion of the eddies. Thus the locally increased oxygen consumption within the eddy cores enhances the total oxygen consumption in the open eastern tropical North Atlantic Ocean and seems to be an contributor to the formation of the shallow oxygen minimum zone.

2015 ◽  
Vol 12 (8) ◽  
pp. 2597-2605 ◽  
Author(s):  
J. Karstensen ◽  
B. Fiedler ◽  
F. Schütte ◽  
P. Brandt ◽  
A. Körtzinger ◽  
...  

Abstract. Here we present first observations, from instrumentation installed on moorings and a float, of unexpectedly low (<2 μmol kg−1) oxygen environments in the open waters of the tropical North Atlantic, a region where oxygen concentration does normally not fall much below 40 μmol kg−1. The low-oxygen zones are created at shallow depth, just below the mixed layer, in the euphotic zone of cyclonic eddies and anticyclonic-modewater eddies. Both types of eddies are prone to high surface productivity. Net respiration rates for the eddies are found to be 3 to 5 times higher when compared with surrounding waters. Oxygen is lowest in the centre of the eddies, in a depth range where the swirl velocity, defining the transition between eddy and surroundings, has its maximum. It is assumed that the strong velocity at the outer rim of the eddies hampers the transport of properties across the eddies boundary and as such isolates their cores. This is supported by a remarkably stable hydrographic structure of the eddies core over periods of several months. The eddies propagate westward, at about 4 to 5 km day−1, from their generation region off the West African coast into the open ocean. High productivity and accompanying respiration, paired with sluggish exchange across the eddy boundary, create the "dead zone" inside the eddies, so far only reported for coastal areas or lakes. We observe a direct impact of the open ocean dead zones on the marine ecosystem as such that the diurnal vertical migration of zooplankton is suppressed inside the eddies.


2010 ◽  
Vol 40 (8) ◽  
pp. 1784-1801 ◽  
Author(s):  
Peter Brandt ◽  
Verena Hormann ◽  
Arne Körtzinger ◽  
Martin Visbeck ◽  
Gerd Krahmann ◽  
...  

Abstract Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.5° and 23°W during 1999–2008 as well as historical data referring to the period 1972–85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 μmol kg−1 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen–salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.


2016 ◽  
Author(s):  
Florian Schütte ◽  
Johannes Karstensen ◽  
Gerd Krahmann ◽  
Helena Hauss ◽  
Björn Fiedler ◽  
...  

Abstract. Localized open-ocean low–oxygen dead-zones in the tropical Northeast Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic modewater eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats revealed that eddies with low oxygen concentrations at 50–150 m depths can be found in surprisingly high numbers and in a large area (from about 4°N to 22°N, from the shelf at the eastern boundary to 38°W). Minimum oxygen concentrations of about 9 µmol kg−1 in CEs and severely suboxic concentrations (< 1 µmol kg−1) in ACMEs were observed. In total, 173 profiles with oxygen concentrations below the minimum background concentration of 40 µmol kg−1 could be associated with 27 independent “dead-zone” eddies (10 CEs; 17 ACMEs) over a period of 10 years. The eddies’ oxygen minimum is located in the eddy core beneath the mixed layer at a mean depth of 80 m. Compared to the surrounding waters, the mean oxygen anomaly between 50 and 150 m depth for CEs (ACMEs) is −38 (−79) µmol kg−1. The low oxygen concentration right beneath the mixed layer has been attributed to the combination of high productivity in the eddies’ surface waters and the isolation of their cores with respect to lateral oxygen supply. Indeed, eddies of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The locally increased consumption within these eddies represents an essential part of the total consumption in the open tropical Northeast Atlantic Ocean and might be partly responsible for the formation of the shallow oxygen minimum zone. Eddies south of 12°N carry weak hydrographic anomalies in their cores and seem to be generated in the open ocean away from the boundary. North of 12°N, eddies of both types carry anomalously low salinity water of South Atlantic Central Water origin from the eastern boundary upwelling region into the open ocean. Water mass properties and satellite eddy tracking both point to an eddy generation near the eastern boundary.


2012 ◽  
Vol 9 (10) ◽  
pp. 14291-14325 ◽  
Author(s):  
T. Fischer ◽  
D. Banyte ◽  
P. Brandt ◽  
M. Dengler ◽  
G. Krahmann ◽  
...  

Abstract. The replenishment of consumed oxygen in the open ocean oxygen minimum zone (OMZ) off West Africa in the tropical North Atlantic Ocean is studied, with a focus on oxygen transport across density surfaces (diapycnal flux). The latter is obtained from a large observational set of oxygen profiles and diapycnal mixing data from years 2008 to 2010. Diapycnal mixing is inferred from different sources: a large scale tracer release experiment, microstructure profiles, and shipboard acoustic current measurements plus density profiles. The average diapycnal diffusivity in the study area is 1 × 10−5 m2 s−1. No significant vertical gradient of average diapycnal diffusivities exists in the depth interval from 150 to 500 m. The diapycnal flux is found to contribute substantially to the oxygen supply of the OMZ. Within the OMZ core, 1.5 µmol kg−1 a−1 of oxygen is supplied via diapycnal mixing, contributing about a third of the total demand. The oxygen that is contributed via diapycnal mixing originates from oxygen that has been laterally supplied within the overlying Central Water layer by advective and eddy fluxes. Due to the existence of a separate shallow oxygen minimum at about 100 m depth throughout most of the study area, there is no direct net vertical oxygen flux from the surface layer of the study area into the Central Water layer. Thus all oxygen supply of the OMZ is associated with remote pathways.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
H. J. T. Hoving ◽  
P. Neitzel ◽  
H. Hauss ◽  
S. Christiansen ◽  
R. Kiko ◽  
...  

AbstractDistribution patterns of fragile gelatinous fauna in the open ocean remain scarcely documented. Using epi-and mesopelagic video transects in the eastern tropical North Atlantic, which features a mild but intensifying midwater oxygen minimum zone (OMZ), we established one of the first regional observations of diversity and abundance of large gelatinous zooplankton. We quantified the day and night vertical distribution of 46 taxa in relation to environmental conditions. While distribution may be driven by multiple factors, abundance peaks of individual taxa were observed in the OMZ core, both above and below the OMZ, only above, or only below the OMZ whereas some taxa did not have an obvious distribution pattern. In the eastern eropical North Atlantic, OMZ expansion in the course of global climate change may detrimentally impact taxa that avoid low oxygen concentrations (Beroe, doliolids), but favour taxa that occur in the OMZ (Lilyopsis, phaeodarians, Cydippida, Colobonema, Haliscera conica and Halitrephes) as their habitat volume might increase. While future efforts need to focus on physiology and taxonomy of pelagic fauna in the study region, our study presents biodiversity and distribution data for the regional epi- and mesopelagic zones of Cape Verde providing a regional baseline to monitor how climate change may impact the largest habitat on the planet, the deep pelagic realm.


2017 ◽  
Author(s):  
Johannes Hahn ◽  
Peter Brandt ◽  
Sunke Schmidtko ◽  
Gerd Krahmann

Abstract. Repeat shipboard and multi-year moored observations obtained in the oxygen minimum zone (OMZ) of the eastern tropical North Atlantic (ETNA) were used to study the decadal change in oxygen for the period 2006–2015. At the depth of the deep oxycline (200–400 m), oxygen decreased with a rate of −6.2 ± 3.8 μmol kg−1 decade−1, while below the OMZ core (400–1,000 m) oxygen increased by 4.1 ± 1.7 μmol kg−1 decade−1 on average. The inclusion of these decadal oxygen trends in the recently estimated oxygen budget for the ETNA OMZ showed a weakened ventilation of the upper 400 m, whereas the ventilation strengthened homogeneously over depth below 400 m. This resulted in a shoaling of the ETNA OMZ of −0.03 ± 0.02 kg m−3 decade−1 in density space, which was only partly compensated by a deepening of isopycnal surfaces, thus pointing to a shoaling of the OMZ in depth space as well. Shipboard, float and satellite observations of velocity and hydrography indicate different regional as well as remote changes in the circulation pattern to be responsible for the change in the ventilation of the ETNA. The reduced ventilation in the upper 400 m may have been induced by a southward shift of the wind-driven circulation or by a change of the composition of South Atlantic Central Water. There are hints that below 400 m, latitudinally alternating zonal jets have strengthened, thus contributing to the increased ventilation. Nevertheless, temporal changes in isopycnal eddy supply or diapycnal supply (diapycnal mixing as well as diapycnal advection) cannot be excluded in having contributed to the observed oxygen change.


2014 ◽  
Vol 11 (12) ◽  
pp. 17391-17411 ◽  
Author(s):  
J. Karstensen ◽  
B. Fiedler ◽  
F. Schütte ◽  
P. Brandt ◽  
A. Körtzinger ◽  
...  

Abstract. The intermittent appearances of low oxygen environments are a particular thread for marine ecosystems. Here we present first observations of unexpected low (<2 μmol kg-1) oxygen environments in the open waters of the eastern tropical North Atlantic, a region where typically oxygen concentration does not fall below 40 μmol kg-1. The low oxygen zones are created just below the mixed-layer, in the euphotic zone of high productive cyclonic and anticyclonic-modewater eddies. A dynamic boundary is created from the large swirl-velocity against the weak background flow. Hydrographic properties within the eddies are kept constant over periods of several months, while net respiration is elevated by a factor of 3 to 5 reducing the oxygen content. We repeatedly observed low oxygen eddies in the region. The direct impact on the ecosystem is evident from anomalous backscatter behaviour. Satellite derived global eddy statistics do not allow to estimate the large-scale impact of the eddies because their vertical structure (mixed-layer depth, euphotic depth) play a key role in creating the low oxygen environment.


Sign in / Sign up

Export Citation Format

Share Document