south atlantic central water
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 1)

2019 ◽  
Author(s):  
Mian Liu ◽  
Toste Tanhua

Abstract. The characteristics of the main water masses in the Atlantic Ocean are investigated and defined as Source Water Types (SWTs) from their formation area by six key properties based on the GLODAPv2 observational data. These include both conservative (potential temperature and salinity) and non-conservative (oxygen, silicate, phosphate and nitrate) variables. For this we divided the Atlantic Ocean into four vertical layers by distinct potential densities in the shallow and intermediate water column, and additionally by concentration of silicate in the deep waters. The SWTs in the upper/central water layer originates from subduction during winter and are defined as central waters, formed in four distinct areas; East North Atlantic Central water (ENACW), West North Atlantic Central Water (WNACW), East South Atlantic Central Water (ESACW) and West South Atlantic Central Water (WSACW). Below the upper/central layer the intermediate layer consist of three main SWTs; Antarctic Intermediate Water (AAIW), Subarctic Intermediate Water (SAIW) and Mediterranean Overflow Water (MOW). The North Atlantic Deep Water (NADW) is the dominating SWT in the deep and overflow layer, and is divided into upper and lower NADW based on the different origins and properties. The origin of both the upper and lower NADW is the Labrador Sea Water (LSW), the Iceland–Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW). Antarctic Bottom Water (AABW) is the only natural SWT in the bottom layer and this SWT is redefined as North East Atlantic Bottom Water (NEABW) in the north of equator due to the change of key properties, especial silicate. Similar with NADW, two additional SWTS, Circumpolar Deep Water (CDW) and Weddell Sea Bottom Water (WSBW), are defined in the Weddell Sea in order to understand the origin of AABW. The definition of water masses in biogeochemical space is useful for, in particular, chemical and biological oceanography to understand the origin and mixing history of water samples.


2017 ◽  
Author(s):  
Johannes Hahn ◽  
Peter Brandt ◽  
Sunke Schmidtko ◽  
Gerd Krahmann

Abstract. Repeat shipboard and multi-year moored observations obtained in the oxygen minimum zone (OMZ) of the eastern tropical North Atlantic (ETNA) were used to study the decadal change in oxygen for the period 2006–2015. At the depth of the deep oxycline (200–400 m), oxygen decreased with a rate of −6.2 ± 3.8 μmol kg−1 decade−1, while below the OMZ core (400–1,000 m) oxygen increased by 4.1 ± 1.7 μmol kg−1 decade−1 on average. The inclusion of these decadal oxygen trends in the recently estimated oxygen budget for the ETNA OMZ showed a weakened ventilation of the upper 400 m, whereas the ventilation strengthened homogeneously over depth below 400 m. This resulted in a shoaling of the ETNA OMZ of −0.03 ± 0.02 kg m−3 decade−1 in density space, which was only partly compensated by a deepening of isopycnal surfaces, thus pointing to a shoaling of the OMZ in depth space as well. Shipboard, float and satellite observations of velocity and hydrography indicate different regional as well as remote changes in the circulation pattern to be responsible for the change in the ventilation of the ETNA. The reduced ventilation in the upper 400 m may have been induced by a southward shift of the wind-driven circulation or by a change of the composition of South Atlantic Central Water. There are hints that below 400 m, latitudinally alternating zonal jets have strengthened, thus contributing to the increased ventilation. Nevertheless, temporal changes in isopycnal eddy supply or diapycnal supply (diapycnal mixing as well as diapycnal advection) cannot be excluded in having contributed to the observed oxygen change.


2014 ◽  
Vol 86 (3) ◽  
pp. 1151-1165 ◽  
Author(s):  
CHRISTIANE S. DE SOUZA ◽  
JOANA A.G. LUZ ◽  
PAULO O. MAFALDA JUNIOR

Relationship between spatial distribution of chaetognaths and hydrographic conditions around seamounts and islands off Northeastern Brazil were analyzed from 133 oceanographic stations during the months of January – April of 1997 and April – July of 1998. Oblique zooplankton tows, using 50 cm diameter Bongo nets with 500µm mesh with a flowmeter to determine the filtered volume, were carried out to a maximum of 200m depth. The Superficial Equatorial Water, which had a salinity > 36 PSU and temperature > 20°C, occupied the top 80 to 200m depth. Below this water mass was the South Atlantic Central Water with salinity ranging from 34.5 to 36 PSU and temperature from 6 to 20°C. The community of chaetognaths showed six species: Pterosagitta draco, Flaccisagitta enflata, Flaccisagitta hexaptera, Pseudosagitta lyra, Serratosagitta serratodentata, and Sagitta helenae. Of these species, F. enflata was the most abundant (32.05% in 1997 and 42.18% in 1998) and the most frequent (87.88% in 1997 and 95% in 1998) during both periods. A mesopelagic specie was identified (P. lyra). This specie was more abundant in 1997 (3.42%), when the upwelling was more intense. P. lyra occurred in 22% of the samples during 1997. The abundance of F. enflata, an epiplanktonic species, increased, associated with greater water-column stability.


2010 ◽  
Vol 58 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Maria Luiza Chisté Flaquer da Rocha ◽  
Wellington Silva Fernandez ◽  
Alfredo Martins Paiva Filho

The aim of this study was to analyze the distribution and abundance of the fish fauna of Palmas bay on Anchieta Island in southeastern Brazil. Specimens were caught in the summer and winter of 1992, using an otter trawl at three locations in the bay. The specimens were caught in both the nighttime and daytime. Data on the water temperature and salinity were recorded for the characterization of the predominant water mass in the region, and sediment samples were taken for granulometric analysis. A total of 7 656 specimens (79 species), with a total weight of approximately 300 kg, were recorded. The most abundant species were Eucinostomus argenteus, Ctenosciaena gracilicirrhus, Haemulon steindachneri, Eucinostomus gula and Diapterus rhombeus, which together accounted for more than 73% of the sample. In general, the ecological indices showed no differences in the composition of species for the abiotic variables analyzed. The multivariate analysis showed that the variations in the distribution of the fish fauna were mainly associated with intra-annual differences in temperature and salinity, resulting from the presence of South Atlantic Central Water (SACW) in the area during the summer. The analysis also showed an association with the type of bottom and a lesser association with respect to the night/day periods.


2009 ◽  
Vol 69 (1) ◽  
pp. 67-73 ◽  
Author(s):  
JF. Dias ◽  
CL. Lopes

Data collected during an oceanographic cruise along the southeastern Brazilian coast from Cape Frio (22° 58' S) and Paraná (27° 50' S) in March 1982 showed that the marine insect Halobates micans occurred along the Southeastern Brazilian Bight, but in lower abundance in low-temperature areas due to the intrusion and upwelling of South Atlantic Central Water, and in low-salinity areas in Coastal Water. Insect capture was higher at night and in the oligotrophic Tropical Water. The number of nymphs and adult females was higher, probably because of an active breeding season during the austral summer. Adult sex ratio was 1.3:1.0 (F:M). Floating gas vesicles of benthic Sargassum spp. and petroleum lumps were used by females for egg-laying.


2008 ◽  
Vol 5 (4) ◽  
pp. 1119-1125 ◽  
Author(s):  
A. Kock ◽  
S. Gebhardt ◽  
H. W. Bange

Abstract. Coastal upwelling regions have been identified as sites of enhanced CH4 emissions to the atmosphere. The coastal upwelling area off Mauritania (NW Africa) is one of the most biologically productive regions of the world's ocean but its CH4 emissions have not been quantified so far. More than 1000 measurements of atmospheric and dissolved CH4 in the surface layer in the upwelling area off Mauritania were performed as part of the German SOPRAN (Surface Ocean Processes in the Anthropocene) study during two cruises in March/April 2005 (P320/1) and February 2007 (P348). During P348 enhanced CH4 saturations of up to 200% were found close to the coast and were associated with upwelling of South Atlantic Central Water. An area-weighted, seasonally adjusted estimate yielded overall annual CH4 emissions in the range from 1.6 to 2.9 Gg CH4. Thus the upwelling area off Mauritania represents a regional hot spot of CH4 emissions but seems to be of minor importance for the global oceanic CH4 emissions.


Sign in / Sign up

Export Citation Format

Share Document