diapycnal diffusivity
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 13)

H-INDEX

25
(FIVE YEARS 1)

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Tongya Liu ◽  
Hsien-Wang Ou ◽  
Xiaohui Liu ◽  
Yu-Kun Qian ◽  
Dake Chen

AbstractA series of numerical simulations with different forcing conditions are carried out, to investigate the roles played by buoyancy and wind forcing on the upper ocean gyres, and to contrast the laminar and eddying regimes. Model experiments show that the buoyancy-driven eastward geostrophic flow tends to suppress the formation of the wind-driven subpolar gyre, but the northward eddy heat transport can homogenize the subpolar water and reduce the meridional temperature gradient by about two-third, thus counteracting the buoyancy effect and saving the subpolar gyre. For the subtropical gyre, its transport is enhanced by eddy mixing, and the role of buoyancy forcing is very sensitive to the choice of diapycnal diffusivity. Our results suggest that eddy effects must be considered in the dynamics of the subpolar gyre, and vertical diffusivity should be selected carefully in simulating the basin-wide circulations.


2021 ◽  
Vol 28 (3) ◽  
pp. 445-465
Author(s):  
Yi Gong ◽  
Haibin Song ◽  
Zhongxiang Zhao ◽  
Yongxian Guan ◽  
Kun Zhang ◽  
...  

Abstract. Shoaling internal solitary waves near the Dongsha Atoll in the South China Sea dissipate their energy and enhance diapycnal mixing, which have an important impact on the oceanic environment and primary productivity. The enhanced diapycnal mixing is patchy and instantaneous. Evaluating its spatiotemporal distribution requires comprehensive observation data. Fortunately, seismic oceanography meets the requirements, thanks to its high spatial resolution and large spatial coverage. In this paper, we studied three internal solitary waves in reversing polarity near the Dongsha Atoll and calculated their spatial distribution of diapycnal diffusivity. Our results show that the average diffusivities along three survey lines are 2 orders of magnitude larger than the open-ocean value. The average diffusivity in internal solitary waves with reversing polarity is 3 times that of the non-polarity reversal region. The diapycnal diffusivity is higher at the front of one internal solitary wave and gradually decreases from shallow to deep water in the vertical direction. Our results also indicate that (1) the enhanced diapycnal diffusivity is related to reflection seismic events, (2) convective instability and shear instability may both contribute to the enhanced diapycnal mixing in the polarity-reversing process, and (3) the difference between our results and Richardson-number-dependent turbulence parameterizations is about 2–3 orders of magnitude, but its vertical distribution is almost the same.


Author(s):  
Yuan-Zheng Lu ◽  
Xian-Rong Cen ◽  
Shuang-Xi Guo ◽  
Ling Qu ◽  
Peng-Qi Huang ◽  
...  

AbstractThe nominal spatial distribution of diapycnal mixing in the South China Sea (SCS) is obtained with Thorpe-scale analysis from 2004 to 2020. The inferred dissipation rate ε and diapycnal diffusivity Kz between 100 and 1500 m indicated that the strongest mixing occurred in the Luzon Strait and Dongsha Plateau regions, with ε ~ 3.0 × 10-8 W/kg (εmax = 5.3 × 10-6 W/kg) and Kz ~ 3.5 × 10-4 m2/s (Kz max = 4.2 = 10-2 m2/s). The weakest mixing occurred in the thermocline of the central basin, with ε ~ 6.2 × 10-10 W/kg and Kz ~ 3.7 × 10-6 m2/s. The ε and Kz in the continental slope indicated that the mixing in the northern part [O(10-8) W/kg, O(10-4) m2/s] was comparatively stronger than that in the Xisha and Nansha regions [O(10-9) W/kg, O(10-5) m2/s]. The Kz in the continental slope region (200–2000 m) decayed at a closed rate from the ocean bottom to the main thermocline when the measured depth D was normalized by the ocean depth H as D/H, whether in the shallow or deep oceans. The diapycnal diffusivity was parameterized as Kz = 3.3 × 10−4 (1 + )−2 − 6.0 × 10−6 m2/s. The vertically integrated energy dissipation was nominally as 15.8 mW/m2 for all data and 25.6 mW/m2 for data at stations H < 2000 m. This was about one order higher than that in the open oceans (3.0–3.3 mW/m2), which confirmed the active mixing state in the SCS.


2021 ◽  
Author(s):  
Yi Gong ◽  
Haibin Song ◽  
Zhongxiang Zhao ◽  
Yongxian Guan ◽  
Kun Zhang ◽  
...  

Abstract. Shoaling internal solitary waves near the Dongsha Atoll in the South China Sea dissipate their energy and thus enhance diapycnal mixing, which have an important impact on the oceanic environment and primary productivity. The enhanced diapycnal mixing is patchy and instantaneous. Evaluating its spatiotemporal distribution requires comprehensive observation data. Fortunately, seismic oceanography meets the requirements, thanks to its high spatial resolution and large spatial range. In this paper, we studied three internal solitary waves in reversing polarity near the Dongsha Atoll, and calculated the spatial distribution of resultant diapycnal diffusivity. Our results show that the average diffusivities along three survey lines are two orders of magnitude larger than the open-ocean value. The average diffusivity in the internal solitary wave with reversing polarity is three times that of the non-polarity-reversal region. The diapycnal diffusivity is higher at the front of one internal solitary wave, and gradually decreases from shallow to deep water in the vertical direction. Our results also indicates that (1) the enhanced diapycnal diffusivity is related to reflection seismic events; (2) convective instability and shear instability may both contribute to the enhanced diapycnal mixing in the polarity-reversing process; and (3) the difference between our and previous diffusivity profiles is about 2–3 orders of magnitude, but their vertical distribution is almost the same.


Author(s):  
Chiung-Yin Chang ◽  
Malte F. Jansen

AbstractAlthough the reconfiguration of the abyssal overturning circulation has been argued to be a salient feature of Earth’s past climate changes, our understanding of the physical mechanisms controlling its strength remains limited. In particular, existing scaling theories disagree on the relative importance of the dynamics in the Southern Ocean versus the dynamics in the basins to the north. In this study, we systematically investigate these theories and compare them with a set of numerical simulations generated from an ocean general circulation model with idealized geometry, designed to capture only the basic ingredients considered by the theories. It is shown that the disagreement between existing theories can be partially explained by the fact that the overturning strengths measured in the channel and in the basin scale distinctly with the external parameters, including surface buoyancy loss, diapycnal diffusivity, wind stress, and eddy diffusivity. The overturning in the re-entrant channel, which represents the Southern Ocean, is found to be sensitive to all these parameters, in addition to a strong dependence on bottom topography. By contrast, the basin overturning varies with the integrated surface buoyancy loss rate and diapycnal diffusivity but is mostly unaffected by winds and channel topography. The simulated parameter dependence of the basin overturning can be described by a scaling theory that is based only on basin dynamics.


2021 ◽  
Vol 51 (4) ◽  
pp. 1283-1300
Author(s):  
Qunshu Tang ◽  
Zhiyou Jing ◽  
Jianmin Lin ◽  
Jie Sun

AbstractThe Mariana Ridge is one of the prominent mixing hotspots of the open ocean. The high-resolution underway marine seismic reflection technique provides an improved understanding of the spatiotemporal continuous map of ocean turbulent mixing. Using this novel technique, this study quantifies the diapycnal diffusivity of the subthermocline (300–1200-m depth) turbulence around the Mariana Ridge. The autotracked wave fields on seismic images allow us to derive the dissipation rate ε and diapycnal diffusivity Kρ based on the Batchelor model, which relates the horizontal slope spectra with +1/3 slope to the inertial convective turbulence regime. Diffusivity is locally intensified around the seamounts exceeding 10−3 m2 s−1 and gradually decreases to 10−5–10−4 m2 s−1 in ~60-km range, a distance that may be associated with the internal tide beam emanating paths. The overall pattern suggests a large portion of the energy dissipates locally and a significant portion dissipates in the far field. Empirical diffusivity models Kρ(x) and Kρ(z), varying with the distance from seamounts and the height above seafloor, respectively, are constructed for potential use in ocean model parameterization. Geographic distributions of both the vertically averaged dissipation rate and diffusivity show tight relationships with the topography. Additionally, a strong agreement of the dissipation results between seismic observation and numerical simulation is found for the first time. Such an agreement confirms the suitability of the seismic method in turbulence quantification and suggests the energy cascade from large-scale tides to small-scale turbulence via possible mechanisms of local direct tidal dissipation, near-local wave–wave interactions, and far-field radiating and breaking.


2021 ◽  
Author(s):  
Alex Megann ◽  
Jerome Chanut ◽  
Dave Storkey

&lt;p&gt;The eddy-permitting 1/4&amp;#176; resolution in NEMO has been known to suffer from significant numerical diapycnal mixing. This arises from truncations in the advection scheme, which causes spurious mixing of tracers where there are transient vertical motions from internal tides and near-inertial waves, as well as from computational modes associated with partly-resolved mesoscale features. Suppressing the near-gridscale noise by increasing the viscosity has been shown to offer a useful reduction in that contribution to numerical mixing, but does not have a significant effect on tides and inertial waves.&lt;/p&gt;&lt;p&gt;The z~ scheme replaces eulerian vertical tracer advection across the vertical coordinate surfaces, on time scales less than a few days, with displacements of the coordinate surfaces themselves, in a manner more consistent with the nearly adiabatic nature of near-inertial gravity waves and tides. This has been shown to give substantial reduction in numerical mixing in an idealised configuration, but has yet to be fully evaluated in a global ocean domain. It is shown, using a new prototype eORCA025 global NEMO configuration, that &lt;strong&gt;z~&lt;/strong&gt; with the default filter timescales reduces the effective diapycnal diffusivity and temperature drifts by only about 10%. Preliminary results will be presented for the sensitivity of the numerical mixing to the z~ timescale and other parameters. The application of z~ to a tidally-forced simulation will also be discussed.&lt;/p&gt;


2021 ◽  
Vol 55 (2) ◽  
pp. 185-197
Author(s):  
Yunli Nie ◽  
Xin Luan ◽  
Hua Yang ◽  
Xu Chen ◽  
Dalei Song ◽  
...  

Abstract Microstructure profiling measurements collected at the continental shelf of the Yellow Sea (35°38'N, 121°20'E) from December 4 to 5, 2019, were analyzed by focusing on the characteristics of turbulent mixing in the Yellow Sea and its associated influencing factors. The vertical thermohaline structure of the water column was nonstratified during the observation period, resulting in the vertically and temporally consistent distribution of turbulence dissipation and diapycnal diffusivity. The average (in time and space) dissipation rate and diapycnal diffusivity were 2.95 × 10−8 W kg−1 and 1.86 × 10−4 m2 s−1, respectively. In the vertical distribution, intense mixing occurred near the sea surface and within the bottom layers. The temporal variation in dissipation exhibits a diurnal variation that was strongly affected by surface buoyancy flux and wind energy, and a high amount of dissipation was observed at night, with an average dissipation rate of 2.45 × 10−8 W kg−1, which was almost one order of magnitude higher than that in the daytime (3.55 × 10−9 W kg−1). The cumulative distribution functions of the dissipation rate and diapycnal diffusivity across the entire water column during the measurement period could be parameterized by a lognormal distribution model. Further analysis shows that the dissipation rate was positively related to wind speed and rotational barotropic tidal velocity. Compared with the rotating tidal current, wind-driven turbulence was able to penetrate the surface, thereby causing layer mixing throughout the entire water column (R = 0.71), and is a dominant driver of elevated turbulent mixing during wintertime.


2020 ◽  
Vol 8 (11) ◽  
pp. 832
Author(s):  
Junting Guo ◽  
Yafei Nie ◽  
Shuang Li ◽  
Xianqing Lv

Diapycnal diffusivity is an important parameter to characterize oceanic turbulent mixing and vertical transport. However, due to the challenging accessibility of field observations, the observation of diapycnal diffusivity in the South China Sea (SCS) is rare. In this study, a three-dimensional field of diapycnal diffusivity in the SCS with high spatial resolution is performed by interpolating the rare field observations, which aims to provide a reference for the value of diapycnal diffusivity in ocean models. Given the anisotropy of diapycnal diffusivity and its rapid change in the magnitude in the vertical direction, several typical interpolation methods are compared in this study. Results of two cross-validation methods demonstrate that the three-dimensional (3D) thin-plate spline interpolation method yields the most reasonable and accurate results among a total of five typical methods used in this study.


Sign in / Sign up

Export Citation Format

Share Document