scholarly journals Crop water stress maps for an entire growing season from visible and thermal UAV imagery

2016 ◽  
Vol 13 (24) ◽  
pp. 6545-6563 ◽  
Author(s):  
Helene Hoffmann ◽  
Rasmus Jensen ◽  
Anton Thomsen ◽  
Hector Nieto ◽  
Jesper Rasmussen ◽  
...  

Abstract. This study investigates whether a water deficit index (WDI) based on imagery from unmanned aerial vehicles (UAVs) can provide accurate crop water stress maps at different growth stages of barley and in differing weather situations. Data from both the early and late growing season are included to investigate whether the WDI has the unique potential to be applicable both when the land surface is partly composed of bare soil and when crops on the land surface are senescing. The WDI differs from the more commonly applied crop water stress index (CWSI) in that it uses both a spectral vegetation index (VI), to determine the degree of surface greenness, and the composite land surface temperature (LST) (not solely canopy temperature).Lightweight thermal and RGB (red–green–blue) cameras were mounted on a UAV on three occasions during the growing season 2014, and provided composite LST and color images, respectively. From the LST, maps of surface-air temperature differences were computed. From the color images, the normalized green–red difference index (NGRDI), constituting the indicator of surface greenness, was computed. Advantages of the WDI as an irrigation map, as compared with simpler maps of the surface-air temperature difference, are discussed, and the suitability of the NGRDI is assessed. Final WDI maps had a spatial resolution of 0.25 m.It was found that the UAV-based WDI is in agreement with measured stress values from an eddy covariance system. Further, the WDI is especially valuable in the late growing season because at this stage the remote sensing data represent crop water availability to a greater extent than they do in the early growing season, and because the WDI accounts for areas of ripe crops that no longer have the same need for irrigation. WDI maps can potentially serve as water stress maps, showing the farmer where irrigation is needed to ensure healthy growing plants, during entire growing season.

2016 ◽  
Author(s):  
Helene Hoffmann ◽  
Rasmus Jensen ◽  
Anton Thomsen ◽  
Hector Nieto ◽  
Jesper Rasmussen ◽  
...  

Abstract. This study investigates whether a Water Deficit Index (WDI) based on imagery from Unmanned Aerial Vehicles (UAVs) can provide accurate crop water stress maps at different growth stages of barley and in differing weather situations. Data from both the early and the late growing season are included to investigate whether the WDI index has the unique potential to be applicable both when the land surface is partly composed of bare soil and when crops on the land surface are senescing. The WDI index differs from the more commonly applied Crop Water Stress Index (CWSI) in that it uses both a spectral vegetation index (VI), to determine the degree of surface greenness, and the composite land surface temperature (LST) (not solely canopy temperature). Lightweight thermal and RGB (Red-Green-Blue) cameras were mounted on a UAV on three occasions during the growing season, 2014, and provided composite LST and color images, respectively. From the LST, maps of surface-air temperature differences were computed. From the color images, the Normalized Green-Red Difference Index (NGRDI), constituting the indicator of surface greenness, was computed. Advantages of the WDI as an irrigation map, as compared with simpler maps of the surface-air temperature difference, are discussed, and the suitability of the NGRDI index is assessed. Final WDI maps had a spatial resolution of 0.25 m. It was found that the UAV-based WDI index determines accurate crop water status. Further, the WDI index is especially valuable in the late growing season because at this stage the remote sensing data represent crop water availability to a greater extent than they do in the early growing season, and because the WDI index accounts for areas of ripe crops that no longer have the same need of irrigation. WDI maps can potentially serve as water stress maps, showing the farmer where irrigation is needed to ensure healthy growing plants, during entire growing seasons.


Author(s):  
M.Rokhis Khomarudin ◽  
Parwati Sofan

Crop Water Stress Index (CWSI) is an index which is used to explain the amount of crop water defisiency based on canopy surface temperature. Many researches of CWSI have been done for arranging irigation water system in several crops at different areas. Beside its application in irigation system, CWSI is also known as one of parameters that can influence crop productivity. Regarding the above explanation, it is implied that CWSI is important for monitoring crop drought, arranging irigation water, and estimating crop productivity. This research is proposed to estimate CWSI using MODIS (Moderate Resolution Imaging Spectroradiometer) data which is related to Normalized Difference Vegetation Index (NDVI) and Soil Moisture Storage (ST) in paddy field. The interest area is in East Java wich is the driest area in Java Island. MODIS land surface temperature is used to estimate CWSI, while MODIS reflectance 500 m is used to estimate NDVI. They were downloaded from NASA website. Data period was from June 15th to June 30 th, 2004. Based on the correlation between NDVI and CWSI, we can estimate NDVI value when paddy water stress occured. The result showed that the largest paddy area in East Java which has high water stress is located in Bojonegoro District. The water stress areain Bojonegoro Distric increase from June 15th to June 30th, 2004. The high to medium water stress level in East Java were predicted as bare land. The CWSI has negative correlation with NDVI and ST. The CWSI 0.6 are obtained in NDVI 0.5 with ST less than 50 percent. This showed that the paddy water stress began at NDVI 0.5 and ST 50 percent. Coefficient of correlation between CWSI and NDVI is 0.58, while CWSI and ST is 0.71. The correlation model between CWSI, NDVI and ST is statistically significant. Keywords: CWSI,NDVI, ST, MODIS Land Surface Temperature, Water Stress.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1091d-1091 ◽  
Author(s):  
Alvan G. Gaus ◽  
George M. Greene

Water stress in mature `Redhaven' / Lovell peach [Prunus persica (L.) Batsch] trees was imposed, during the 1988 growing season. Trickle irrigation was reduced from 100% to 25% of a calculated weekly evaporation amount on 22 June, 11 July, and 8 and 27 Aug. Trees were isolated from rainfall by tents under the canopy and from horizontal water movement between root systems on 4 sides to a depth of 0.5 m by a water-proof barrier. Canopy to air temperature differentials monitored throughout the growing season were developed into 3 stress indexes: crop water stress index (CWSI); cumulative crop water stress index (CCWSI); and postharvest cumulative crop water stress index (PCCWSI). CWSI values varied from 0 to 0.6, while both CCWSI and PCCWSI increased through late Sept. Mean PCCWSI of the 22 June 25% treatment increased at a greater rate than the other treatments. Significant linear regressions were found with some of the indexes and net photosynthesis or stomatal conductance; however, the r-square values were low. In general, no linear relationships were found between either CCWSI of PCCWSI and the Index of Injury for cold hardiness.


2013 ◽  
Vol 118 ◽  
pp. 79-86 ◽  
Author(s):  
N. Agam ◽  
Y. Cohen ◽  
J.A.J. Berni ◽  
V. Alchanatis ◽  
D. Kool ◽  
...  

1994 ◽  
Vol 86 (3) ◽  
pp. 574-581 ◽  
Author(s):  
H. R. Jalali‐Farahani ◽  
D. C. Slack ◽  
D. M. Kopec ◽  
A. D. Matthias ◽  
P. W. Brown

1994 ◽  
Vol 86 (1) ◽  
pp. 195-199 ◽  
Author(s):  
Donald J. Garrot ◽  
Michael J. Ottman ◽  
D.D. Fangmeier ◽  
Stephen H. Husman

Sign in / Sign up

Export Citation Format

Share Document