scholarly journals Small-scale heterogeneity of trace metals including rare earth elements and yttrium in deep-sea sediments and porewaters of the Peru Basin, southeastern equatorial Pacific

2019 ◽  
Vol 16 (24) ◽  
pp. 4829-4849 ◽  
Author(s):  
Sophie A. L. Paul ◽  
Matthias Haeckel ◽  
Michael Bau ◽  
Rajina Bajracharya ◽  
Andrea Koschinsky

Abstract. Due to its remoteness, the deep-sea floor remains an understudied ecosystem of our planet. The patchiness of existing data sets makes it difficult to draw conclusions about processes that apply to a wider area. In our study we show how different settings and processes determine sediment heterogeneity on small spatial scales. We sampled solid phase and porewater from the upper 10 m of an approximately 7.4×13 km2 area in the Peru Basin, in the southeastern equatorial Pacific Ocean, at 4100 m water depth. Samples were analyzed for trace metals, including rare earth elements and yttrium (REY), as well as for particulate organic carbon (POC), CaCO3, and nitrate. The analyses revealed the surprisingly high spatial small-scale heterogeneity of the deep-sea sediment composition. While some cores have the typical green layer from Fe(II) in the clay minerals, this layer is missing in other cores, i.e., showing a tan color associated with more Fe(III) in the clay minerals. This is due to varying organic carbon contents: nitrate is depleted at 2–3 m depth in cores with higher total organic carbon contents but is present throughout cores with lower POC contents, thus inhibiting the Fe(III)-to-Fe(II) reduction pathway in organic matter degradation. REY show shale-normalized (SN) patterns similar to seawater, with a relative enrichment of heavy REY over light REY, positive LaSN anomaly, negative CeSN anomaly, and positive YSN anomaly and correlate with the Fe-rich clay layer and, in some cores, also correlate with P. We therefore propose that Fe-rich clay minerals, such as nontronite, as well as phosphates, are the REY-controlling phases in these sediments. Variability is also seen in dissolved Mn and Co concentrations between sites and within cores, which might be due to dissolving nodules in the suboxic sediment, as well as in concentration peaks of U, Mo, As, V, and Cu in two cores, which might be related to deposition of different material at lower-lying areas or precipitation due to shifting redox boundaries.

2019 ◽  
Author(s):  
Sophie A. L. Paul ◽  
Matthias Haeckel ◽  
Michael Bau ◽  
Rajina Bajracharya ◽  
Andrea Koschinsky

Abstract. Due to its remoteness, the deep-sea floor remains an understudied ecosystem of our planet. The patchiness of existing data sets makes it difficult to draw conclusions about processes that apply to a wider area. In our study we show how different settings and processes determine sediment heterogeneity on small spatial scales. We sampled solid phase and pore water from the upper 10 m of an approximately 7.4 × 13 km2 large area in the Peru Basin, south-east equatorial Pacific Ocean, at 4100 m water depth. Samples were analyzed for trace metals including rare earth elements and yttrium (REY) as well as for particulate organic carbon (POC), CaCO3, and nitrate. The analyses revealed a surprisingly high small-scale heterogeneity of the deep-sea sediment composition. While some cores have the typical green layer from Fe(II) in the clay minerals, this layer is missing in other cores, i.e. showing a tan color associated with Fe(III) in the clay minerals. This is due to varying organic carbon contents: nitrate is depleted at 2–3 m depth in cores with higher total organic carbon contents, but is present throughout cores with lower POC contents, thus inhibiting the Fe(III)-to-Fe(II) reduction pathway in organic matter degradation. REY show shale-normalized (SN) patterns similar to seawater with a relative enrichment of heavy REY over light REY, positive LaSN anomaly, negative CeSN anomaly, as well as positive YSN anomaly and correlate with the Fe-rich clay layer and in some cores also with P. We, therefore, propose that Fe-rich clay minerals, such as nontronite, as well as phosphates are the REY-controlling phases in these sediments. Variability is also seen in dissolved Mn and Co concentrations, which might be due to dissolving nodules in the suboxic sediment, as well as in concentration peaks of U, Mo, As, V, and Cu in two cores, which might be related to deposition of different material at lower lying areas.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yutaro Takaya ◽  
Kazutaka Yasukawa ◽  
Takehiro Kawasaki ◽  
Koichiro Fujinaga ◽  
Junichiro Ohta ◽  
...  

2019 ◽  
Vol 185 ◽  
pp. 149-161 ◽  
Author(s):  
Aref Alshameri ◽  
Hongping He ◽  
Chen Xin ◽  
Jianxi Zhu ◽  
Wei Xinghu ◽  
...  

1994 ◽  
Vol 353 ◽  
Author(s):  
R. Bros ◽  
F. Gauthier-Lafaye ◽  
P. Larque ◽  
J. Samuel ◽  
P. Stille

AbstractNew mineralogical and isotopic studies were carried out on samples from the Bangombé natural nuclear reactor. This reactor is located at shallow depth in the weathering profile and has been subjected to severe supergene alteration. Textural evidence indicates partial dissolution of uraninite in the Bangombé ore related to precipitation of Fe-Ti oxi-hydroxides and clay minerals (kaolinite and metahalloysite). As a consequence of the alteration of the uraninite, uranium and f issiogenic rare earth elements were released in the clayey border of the reactor, whereas radiogenic 232Th remained confined in the close vicinity of the core. A retention effect is also evidenced, under reducing conditions, in the black shales located above the reactor.


2012 ◽  
Vol 117-118 ◽  
pp. 71-78 ◽  
Author(s):  
Georgiana A. Moldoveanu ◽  
Vladimiros G. Papangelakis

2013 ◽  
Vol 131-132 ◽  
pp. 158-166 ◽  
Author(s):  
Georgiana A. Moldoveanu ◽  
Vladimiros G. Papangelakis

1999 ◽  
Vol 63 (5) ◽  
pp. 627-643 ◽  
Author(s):  
Eric Douville ◽  
Philippe Bienvenu ◽  
Jean Luc Charlou ◽  
Jean Pierre Donval ◽  
Yves Fouquet ◽  
...  

2013 ◽  
Vol 10 (7) ◽  
pp. 4547-4563 ◽  
Author(s):  
J. Ingels ◽  
A. Vanreusel

Abstract. The urge to understand spatial distributions of species and communities and their causative processes has continuously instigated the development and testing of conceptual models in spatial ecology. For the deep sea, there is evidence that structural and functional characteristics of benthic communities are regulated by a multitude of biotic and environmental processes that act in concert on different spatial scales, but the spatial patterns are poorly understood compared to those for terrestrial ecosystems. Deep-sea studies generally focus on very limited scale ranges, thereby impairing our understanding of which spatial scales and associated processes are most important in driving structural and functional diversity of communities. Here, we used an extensive integrated dataset of free-living nematodes from deep-sea sediments to unravel the importance of different spatial scales in determining benthic infauna communities. Multiple-factor multivariate permutational analyses were performed on different sets of community descriptors (structure, structural and functional diversity, standing stock). The different spatial scales investigated cover two margins in the northeast Atlantic, several submarine canyons/channel/slope areas, a bathymetrical range of 700–4300 m, different sampling locations at each station, and vertical sediment profiles. The results indicated that the most important spatial scale for structural and functional diversity and standing stock variability is the smallest one; infauna communities changed substantially more with differences between sediment depth layers than with differences associated to larger geographical or bathymetrical scales. Community structure differences were greatest between stations at both margins. Important regulating ecosystem processes and the scale on which they occur are discussed. The results imply that, if we are to improve our understanding of ecosystem patterns of deep-sea infauna and the relevant processes driving their structure, structural and functional diversity, and standing stock, we must pay particular attention to the small-scale heterogeneity or patchiness and the causative mechanisms acting on that scale.


Sign in / Sign up

Export Citation Format

Share Document