scholarly journals Cycling and retention of nitrogen in European beech (<i>Fagus sylvatica</i> L.) ecosystems under elevated fructification frequency

2021 ◽  
Vol 18 (12) ◽  
pp. 3763-3779
Author(s):  
Rainer Brumme ◽  
Bernd Ahrends ◽  
Joachim Block ◽  
Christoph Schulz ◽  
Henning Meesenburg ◽  
...  

Abstract. Atmospheric deposition of nitrogen (N) has exceeded its demand for plant increment in forest ecosystems in Germany. High N inputs increased plant growth, the internal N cycling within the ecosystem, the retention of N in soil and plant compartments, and the N output by seepage water. But the processes involved are not fully understood, notably the effect of fructification in European beech (Fagus sylvatica L.) on N fluxes. The frequency of fructification has increased together with air temperature and N deposition, but its impact on N fluxes and the sequestration of carbon (C) and N in soils have been hardly studied. A field experiment using 15N-labeled leaf litter exchange was carried out over a 5.5-year period at seven long-term European beech (Fagus sylvatica L.) monitoring sites to study the impact of current mast frequency on N cycling. Mean annual leaf litterfall contained 35 kg N ha−1, but about one-half of that was recovered in the soil 5.5 years after the establishment of the leaf litter 15N exchange experiment. In these forests, fructification occurred commonly at intervals of 5 to 10 years, which has now changed to every 2 years as observed during this study period. Seed cupules contributed 51 % to the additional litterfall in mast years, which creates a high nutrient demand during their decomposition due to the very high ratios of C to N and C to phosphorus (P). Retention of leaf litter 15N in the soil was more closely related to the production of total litterfall than to the leaf litterfall, indicating the role of seed cupules in the amount of leaf N retained in the soil. Higher mast frequency increased the mass of mean annual litterfall by about 0.5 Mg ha−1 and of litterfall N by 8.7 kg ha−1. Mean net primary production (NPP) increased by about 4 %. Mean total N retention in soils calculated by input and output fluxes was unrelated to total litterfall, indicating that mast events were not the primary factor controlling total N retention in soils. Despite reduced N deposition since the 1990s, about 5.7 out of 20.7 kg N ha−1 deposited annually between 1994 and 2008 was retained in soils, notably at acid sites with high N/P and C/P ratios in the organic layers and mineral soils, indicating P limitation for litter decomposition. Trees retained twice as much N compared to soils by biomass increment, particularly in less acidic stands where the mineral soils had low C/N ratios. These results have major implications for our understanding of the C and N cycling and N retention in forest ecosystems. In particular the role of mast products in N retention needs more research in the future.

2021 ◽  
Author(s):  
Rainer Brumme ◽  
Bernd Ahrends ◽  
Joachim Block ◽  
Christoph Schulz ◽  
Henning Meesenburg ◽  
...  

Abstract. Atmospheric deposition of nitrogen (N) has exceeded its demand for plant increment in forest ecosystems in Germany. High N inputs increased plant growth, the internal N cycling within the ecosystem, the retention of N in soils and plant compartments, and the N output by seepage water. But the processes involved are not fully understood, especially the role of fructification which has increased in its frequency. A field experiment using 15N labelled leaf litter exchange was carried out over a 5.5 years' period at seven long-term monitoring sites with European beech (Fagus sylvatica L.) ecosystems to study the impact of current mast frequency on N cycling. Mean annual leaf litterfall contained 35 kg N ha−1, but about one half of that was recovered in the soil 5.5 years after the establishment of the leaf litter 15N exchange experiment. Retention of leaf litter N in the soil was more closely related to the production of total litterfall than to the leaf litterfall indicating the role of fructification of beech trees in the amount of leaf N retained in the soil. In these forests fructification occurred commonly in intervals of 5 to 10 years, which has now changed to every two to three years as observed during this study period. Seed cupules contributed 51 % to the additional litterfall in mast years which caused a high nutrient demand during their decomposition due to their very high carbon (C) to N and C to phosphorus (P) ratios. Higher mast frequency increased the mass of mean annual litterfall by about 0.5 Mg ha−1 and of litterfall N by 8.7 kg ha−1. Mean net primary production (NPP) increased by about 4 %. Mean total N retention in soils calculated by input and output fluxes was unrelated to total litterfall indicating that mast events were not the primary factor controlling total N retention in soils. Despite reduced N deposition since the 1990s about 5.7 kg N ha−1 out of 20.7 kg N ha−1 deposited annually between 1994 and 2008 were retained in soils notably at acid sites with high N / P and C / P ratios in the organic layers and mineral soils. Ongoing N retention increased the N / P ratios in acid soils with moder type humus forms and reduced the availability of P for plant growth and litter decomposition. Trees retained twice as much N compared to soils by biomass increment particularly in less acid stands where the mineral soils had low C / N ratios.


2008 ◽  
Vol 14 (1) ◽  
pp. 57 ◽  
Author(s):  
M. PAASONEN-KIVEKÄS ◽  
M. YLI-HALLA

Previous studies suggest that nitrogen (N) loads from acid sulphate soil (AS soil) catchments in Finland are higher than those from other agricultural catchments. This study seeks to explain this difference by measuring carbon (C) and N profiles in both an AS soil and a neighbouring non AS soil. In Lapua, western Finland, two adjacent fields (Dystric Cambisols), subjected to similar agricultural practices, were analysed to the depth of 240 cm for pH, total C (Ctot), total N (Ntot), NH4 +-N, NO3 --N, sulphur and bulk density. Field A, an AS soil, contained sulfidic materials and 0.9% Ctot below 170 cm, while Field B, not an AS soil, had 0.3% Ctot in the subsoil and no sulfides. In these soils, the groundwater level declined below 200 cm in summer, subjecting the subsoil to oxidation. This study revealed large stocks of Ctot, Ntot, and mineral N in the subsoil, particularly in the AS soil. At 20–240 cm, Field A contained 292 tons of Ctot ha-1 and 25 tons of Ntot ha-1, while Field B had 152 tons of Ctot ha-1 and 11 tons of Ntot ha-1. Field A contained up to 435 kg of mineral N ha-1 in autumn, while in Field B there was only up to 137 kg of mineral N ha-1. In Field A, NH4 +-N dominated strongly, while NO3 --N dominated in Field B. It is suggested that the greater concentration of mineral N in the AS soil is due to 1) a greater stock of total (mineralizable) N and 2) the slower rate of nitrification resulting in substantial NH4 +-N retention on cation exchange sites.;


2016 ◽  
Vol 62 (3) ◽  
pp. 271-276 ◽  
Author(s):  
Sat Darshan S. Khalsa ◽  
Carolina A. Almanza ◽  
Patrick H. Brown ◽  
David R. Smart

2019 ◽  
Author(s):  
Christopher W. Fernandez ◽  
Craig R. See ◽  
Peter G. Kennedy

AbstractInteractions between symbiotic ectomycorrhizal (EM) and free-living saprotrophs can result in significant deceleration of leaf litter decomposition. While this phenomenon is widely cited, its generality remains unclear, as both the direction and magnitude of EM fungal effects on leaf litter decomposition have been shown to vary among studies. Here we explicitly examine how contrasting leaf litter types and EM fungal communities may lead to differential effects on C and N cycling. Specifically, we measured the response of soil nutrient cycling, litter decay rates, litter chemistry and fungal community structure to the reduction of EM fungi (via trenching) with a reciprocal litter transplant experiment in adjacent Pinus- or Quercus-dominated sites. We found clear evidence of EM fungal suppression of C and N cycling in the Pinus-dominated site, but no suppression in the Quercus-dominated site. Additionally, in the Pinus-dominated site, only the Pinus litter decay rates were decelerated by EM fungi and were associated with decoupling of litter C and N cycling. Our results support the hypothesis that EM fungi can decelerate C cycling via N competition, but strongly suggest that the ‘Gadgil effect’ is dependent on both substrate quality and EM fungal community composition. We argue that understanding tree host traits as well as EM fungal functional diversity is critical to a more mechanistic understanding of how EM fungi mediate forest soil biogeochemical cycling.


2010 ◽  
Vol 76 (21) ◽  
pp. 7116-7125 ◽  
Author(s):  
David J. Levy-Booth ◽  
Richard S. Winder

ABSTRACT The abundance of nifH, nirS, and nirK gene fragments involved in nitrogen (N) fixation and denitrification in thinned second-growth Douglas-fir (Pseudotsuga menziesii subsp. menziesii [Mirb.] Franco) forest soil was investigated by using quantitative real-time PCR. Prokaryotic N cycling is an important aspect of N availability in forest soil. The abundance of universal nifH, Azotobacter sp.-specific nifH (nifH-g1), nirS, and nirK gene fragments in unthinned control and 30, 90, and 100% thinning treatments were compared at two long-term research sites on Vancouver Island, Canada. The soil was analyzed for organic matter (OM), total carbon (C), total N, NH4-N, NO3-N, and phosphorus (P). The soil horizon accounted for the greatest variation in nutrient status, followed by the site location. The 30% thinning treatment was associated with significantly greater nifH-g1 abundance than the control treatment in one site; at the same site, nirS in the mineral soil horizon was significantly reduced by thinning. The abundance of nirS genes significantly correlated with the abundance of nirK genes. In addition, significant correlations were observed between nifH-g1 abundance and C and N in the organic horizon and between nirS and nirK and N in the mineral horizon. Overall, no clear influence of tree thinning on nifH, nirS, and nirK was observed. However, soil OM, C, and N were found to significantly influence N-cycling gene abundance.


2008 ◽  
Vol 38 (12) ◽  
pp. 3056-3070 ◽  
Author(s):  
R. E.J. Boerner ◽  
Jianjun Huang ◽  
Stephen C. Hart

The Fire and Fire Surrogates (FFS) network is composed of 12 forest sites that span the continental United States, all of which historically had frequent low-severity fire. The goal of the FFS study was to assess the efficacy of three management treatments (prescribed fire, mechanical thinning, and their combination) in reducing wildfire hazard and increasing ecosystem sustainability. This paper describes the impact of the FFS treatments on nitrogen (N) storage and distribution. At the network scale, total ecosystem N averaged 4480 kg·ha–1, with ∼9% in vegetation, ∼9% in forest floor, ∼2% in deadwood, and ∼80% in soil. The loss of vegetation N to fire averaged (±SE) 25 ± 11 kg·ha–1, whereas the mechanical and combined mechanical and fire treatments resulted in N losses of 133 ± 21 and 145 ± 19 kg·ha–1, respectively. Western coniferous forests lost more N from each treatment than did eastern forests. None of the manipulative FFS treatments impacted >10%–15% of total N of these ecosystems. Management strategies that maximize ecosystem carbon (C) gain by minimizing loss of N should be a focus in western forests, where C and N cycling are tightly linked, but perhaps not in those eastern forests where atmospheric N deposition has decoupled C and N cycles.


2017 ◽  
Author(s):  
Rafael V. Valadares ◽  
Júlio C. L. Neves ◽  
Maurício D. Costa ◽  
Philip J. Smethurst ◽  
Luiz A. Peternelli ◽  
...  

Abstract. Vigorous Eucalyptus plantations produce 105 to 106 km ha−1 of fine roots that probably increase carbon (C) and nitrogen (N) cycling in rhizosphere soil. However, the quantitative importance of rhizosphere priming is still unknown for most ecosystems, for instance Eucalyptus plantations. Therefore, the objective of this work was to propose and evaluate a mechanistic model for predicting rhizospheric C and N cycling in Eucalyptus plantations. The potential importance of the priming effect was estimated for a typical Eucalyptus plantation in Brazil. The process-based model (ForPRAN – Forest plantation rhizospheric available nitrogen) predicts the change in rhizosphere C and N cycling resulting from root growth and consists of two modules: (1) fine root growth, and (2) C and N rhizosphere cycling. The model describes a series of soil biological processes: root growth, rhizodeposition, microbial uptake, enzymatic synthesis, depolymerization of soil organic matter, respiration, mineralization, immobilization, microbial death, microbial emigration and immigration, SOM formation. Model performance was satisfactory quantitatively and qualitatively when compared to observed data in the literature. The input variables that most influenced N gain by rhizospheric mineralization were (in order of decreasing importance): root diameter > rhizosphere thickness > soil temperature > clay content. The priming effect in a typical Eucalyptus plantation producing 42 m3/ha/year of wood, with assumed losses of 40 % of the total N mineralized, was estimated to be 24.6 % of plantation N demand (shoot + roots + litter). The rhizosphere cycling model should be considered for adaptation to other forestry and agricultural production models where the inclusion of such processes offer the potential for improved model performance.


Sign in / Sign up

Export Citation Format

Share Document