scholarly journals Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils

2021 ◽  
Vol 18 (23) ◽  
pp. 6301-6312
Author(s):  
Pengzhi Zhao ◽  
Daniel Joseph Fallu ◽  
Sara Cucchiaro ◽  
Paolo Tarolli ◽  
Clive Waddington ◽  
...  

Abstract. Being the most common human-created landforms, terrace construction has resulted in an extensive perturbation of the land surface. However, our mechanistic understanding of soil organic carbon (SOC) (de-)stabilization mechanisms and the persistence of SOC stored in terraced soils is far from complete. Here we explored the factors controlling SOC stability and the temperature sensitivity (Q10) of abandoned prehistoric agricultural terrace soils in NE England using soil fractionation and temperature-sensitive incubation combined with terrace soil burial-age measurements. Results showed that although buried terrace soils contained 1.7 times more unprotected SOC (i.e., coarse particulate organic carbon) than non-terraced soils at comparable soil depths, a significantly lower potential soil respiration was observed relative to a control (non-terraced) profile. This suggests that the burial of former topsoil due to terracing provided a mechanism for stabilizing SOC. Furthermore, we observed a shift in SOC fraction composition from particulate organic C towards mineral-protected C with increasing burial age. This clear shift to more processed recalcitrant SOC with soil burial age also contributes to SOC stability in terraced soils. Temperature sensitivity incubations revealed that the dominant controls on Q10 depend on the terrace soil burial age. At relatively younger ages of soil burial, the reduction in substrate availability due to SOC mineral protection with aging attenuates the intrinsic Q10 of SOC decomposition. However, as terrace soil becomes older, SOC stocks in deep buried horizons are characterized by a higher temperature sensitivity, potentially resulting from the poor SOC quality (i.e., soil C:N ratio). In conclusion, terracing in our study site has stabilized SOC as a result of soil burial during terrace construction. The depth–age patterns of Q10 and SOC fraction composition of terraced soils observed in our study site differ from those seen in non-terraced soils, and this has implications when assessing the effects of climate warming and terrace abandonment on the terrestrial C cycle.

2021 ◽  
Author(s):  
Pengzhi Zhao ◽  
Daniel J. Fallu ◽  
Sara Cucchiaro ◽  
Paolo Tarolli ◽  
Clive Waddington ◽  
...  

Abstract. Being the most common and widest spread man-made landform, terrace construction has resulted in an extensive perturbation of the land surface. Our mechanistic understanding of soil organic carbon (SOC) (de-) stabilization mechanisms and of the persistence of SOC stored in terraced soils, however, is far from complete. Here we explored the factors controlling SOC stability and temperature sensitivity (Q10) of abandoned prehistoric agricultural terrace soils in NE England, using soil fractionation and temperature sensitive incubation in combination with measurements of terrace soil burial age. Results showed that although buried terrace soils contained 1.7 times more unprotected SOC (i.e., coarse particulate organic carbon) than non-terraced soils at comparable soil depths, a significantly lower potential soil respiration was observed, relative to a control (non-terraced) profile. This suggests that burial of former topsoil due to terracing provided a mechanism for enhanced C stabilization. Furthermore, we observed a shift in SOC fraction composition from particulate organic C towards mineral protected C with increasing burial age. This clear shift to more processed recalcitrant SOC with soil burial age also contributes to SOC stability in terraced soils. Temperature sensitivity incubations revealed that the dominant controls on Q10 depend on the terrace soil burial age. At relatively younger ages of soil burial, the reduction of substrate availability due to SOC mineral protection with ageing attenuates the intrinsic Q10 of SOC decomposition. However, as terrace soil becomes older, SOC stocks in deep buried horizons are characterized by a higher temperature sensitivity, potentially resulting from the poor SOC quality (i.e., soil C : N ratio). In conclusion, terracing in our study site has stabilized SOC as a result of soil burial during terrace construction. The depth-age patterns of Q10 and SOC fraction composition of terraced soils observed in our study site differ from those seen in non-terraced soils and this has implications when assessing the effects of climate warming or terrace abandonment on the terrestrial C cycle.


2021 ◽  
Author(s):  
Pengzhi Zhao ◽  
Daniel J. Fallu ◽  
Sara Cucchiaro ◽  
Paolo Tarolli ◽  
Clive Waddington ◽  
...  

<p>Being the most common and widest spread man-made landform, terrace construction has resulted in an extensive perturbation of the land surface. Our mechanistic understanding of the underlying soil organic carbon (SOC) (de-)stabilization mechanisms and of the persistence of SOC stored in terraced soils, however, is far from complete. Here we explored the factors controlling SOC stability and temperature sensitivity (Q<sub>10</sub>) of heterotrophic soil respiration of abandoned prehistoric agricultural terrace soils in NE England. For this we combined soil fractionation and temperature sensitive incubation experiments under idealized, well-aerated topsoil conditions with measurements of terrace soil burial age. Results showed that a substantial part of the SOC stock in these terraced soils (43.5± 5.5%) was found in buried horizons. A significantly lower soil potential respiration was observed for buried terrace soils, relative to a control (non-terraced) profile. This suggests that the burial of soils is an important mechanism to slow down the decomposition of SOC in terraced soils. Furthermore, we observed a shift in the SOC pool composition from particulate organic C to mineral carbon mineral protected C with increasing burial age creating energetic barriers for microorganisms to overcome. This clear shift to more processed recalcitrant SOC with terrace soil burial age also contributes to SOC stability in terraced soils. Temperature sensitivity incubations revealed that as terraced and buried soil becomes older, lower C quality in buried horizons leads to an increase in temperature sensitivity of SOC. In conclusion, terracing in our study site has stabilized SOC as a result of soil burial during terrace construction with evolution to a more biologically processed SOC pool with increasing terrace soil burial age. These depth-age patterns of Q<sub>10</sub> and SOC pool composition of terraced soils should be considered when assessing the effects of climate warming or terrace abandonment/removal on the terrestrial C cycle</p><p></p><p></p>


2018 ◽  
Vol 11 (2) ◽  
pp. 593-609 ◽  
Author(s):  
Mahdi Nakhavali ◽  
Pierre Friedlingstein ◽  
Ronny Lauerwald ◽  
Jing Tang ◽  
Sarah Chadburn ◽  
...  

Abstract. Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC) processes in the Joint UK Land Environment Simulator (JULES-DOCM) that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil.


2017 ◽  
Vol 7 ◽  
Author(s):  
Rocío Moreno ◽  
Andrea Inés Irigoyen ◽  
María Gloria Monterubbianesi ◽  
Guillermo Alberto Studdert

Soil organic carbon (SOC) has a key role in the global carbon (C) cycle. The complex relationships among the components of C cycle makes difficult the modelling of SOC variation. Artificial neural networks (ANN) are models capable to determine interrelationships based on information. The objective was to develop and evaluate models based on the ANN technique to estimate the SOC in Mollisols of the Southeastern of Buenos Aires Province, Argentina (SEBA). Data from three long term experiments was used. Management and meteorological variables were selected as input. Management information included numerical variables (initial SOC (SOCI); number of years from the beginning of the experiment (Year), proportion of soybean in the crop sequence; (Prop soybean); crop yields (Yield), proportion of cropping in the crop rotation (Prop agri), and categorical variables (Crop, Tillage). In addition, two meteorological inputs (minimum (Tmin) and mean air temperature (Tmed)), were selected. The ANNs were adequate to estimate SOC in the upper 0.20 m of Mollisols of the SEBA. The model with the best performance included six management variables (SOCI, Year, Prop soybean, Tillage, Yield, Prop agri) and one meteorological variable (Tmin), all of them easily available and with low level of uncertainty. Soil organic C changes related to soil use in the SEBA could be satisfactorily estimated using an ANN developed with simple and easily available input variables. Artificial neural network technique appears as a valuable tool to develop robust models to help predicting SOC changes.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 296 ◽  
Author(s):  
D. Das ◽  
B. S. Dwivedi ◽  
V. K. Singh ◽  
S. P. Datta ◽  
M. C. Meena ◽  
...  

Decline in soil organic carbon (SOC) content is considered a key constraint for sustenance of rice–wheat system (RWS) productivity in the Indo-Gangetic Plain region. We, therefore, studied the effects of fertilisers and manures on SOC pools, and their relationships with crop yields after 18 years of continuous RWS. Total organic C increased significantly with the integrated use of fertilisers and organic sources (from 13 to 16.03gkg–1) compared with unfertilised control (11.5gkg–1) or sole fertiliser (NPKZn; 12.17gkg–1) treatment at 0–7.5cm soil depth. Averaged across soil depths, labile fractions like microbial biomass C (MBC) and permanganate-oxidisable C (PmOC) were generally higher in treatments that received farmyard manure (FYM), sulfitation pressmud (SPM) or green gram residue (GR) along with NPK fertiliser, ranging from 192 to 276mgkg–1 and from 0.60 to 0.75gkg–1 respectively compared with NPKZn and NPK+cereal residue (CR) treatments, in which MBC and PmOC ranged from 118 to 170mgkg–1 and from 0.43 to 0.57gkg–1 respectively. Oxidisable organic C fractions revealed that very labile C and labile C fractions were much larger in the NPK+FYM or NPK+GR+FYM treatments, whereas the less-labile C and non-labile C fractions were larger under control and NPK+CR treatments. On average, Walkley–Black C, PmOC and MBC contributed 29–46%, 4.7–6.6% and 1.16–2.40% towards TOC respectively. Integrated plant nutrient supply options, except NPK+CR, also produced sustainable high yields of RWS.


Soil Research ◽  
1986 ◽  
Vol 24 (2) ◽  
pp. 293 ◽  
Author(s):  
RC Dalal ◽  
RJ Mayer

Distribution of soil organic carbon in sand-, silt- and clay-size fractions during cultivation for periods ranging from 20 to 70 years was studied in six major soils used for cereal cropping in southern Queensland. Particle-size fractions were obtained by dispersion in water using cation exchange resin, sieving and sedimentation. In the soils' virgin state no single particle-size fraction was found to be consistently enriched as compared to the whole soil in organic C in all six soils, although the largest proportion (48%) of organic C was in the clay-size fraction; silt and sand-size fractions contained remaining organic C in equal amounts. Upon cultivation, the amounts of organic C declined from all particle-size fractions in most soils, although the loss rates differed considerably among different fractions and from the whole soil. The proportion of the sand-size fraction declined rapidly (from 26% to 12% overall), whereas that of the clay-size fraction increased from 48% to 61% overall. The proportion of silt-size organic C was least affected by cultivation in most soils. It was inferred, therefore, that the sand-size organic matter is rapidly lost from soil, through mineralization as well as disintegration into silt-size and clay-size fractions, and that the clay fraction provides protection for the soil organic matter against microbial and enzymic degradation.


2014 ◽  
Vol 11 (18) ◽  
pp. 5235-5244 ◽  
Author(s):  
A. Chappell ◽  
N. P. Webb ◽  
R. A. Viscarra Rossel ◽  
E. Bui

Abstract. The debate remains unresolved about soil erosion substantially offsetting fossil fuel emissions and acting as an important source or sink of CO2. There is little historical land use and management context to this debate, which is central to Australia's recent past of European settlement, agricultural expansion and agriculturally-induced soil erosion. We use "catchment" scale (∼25 km2) estimates of 137Cs-derived net (1950s–1990) soil redistribution of all processes (wind, water and tillage) to calculate the net soil organic carbon (SOC) redistribution across Australia. We approximate the selective removal of SOC at net eroding locations and SOC enrichment of transported sediment and net depositional locations. We map net (1950s–1990) SOC redistribution across Australia and estimate erosion by all processes to be ∼4 Tg SOC yr−1, which represents a loss of ∼2% of the total carbon stock (0–10 cm) of Australia. Assuming this net SOC loss is mineralised, the flux (∼15 Tg CO2-equivalents yr−1) represents an omitted 12% of CO2-equivalent emissions from all carbon pools in Australia. Although a small source of uncertainty in the Australian carbon budget, the mass flux interacts with energy and water fluxes, and its omission from land surface models likely creates more uncertainty than has been previously recognised.


2018 ◽  
Author(s):  
Marwa Tifafi ◽  
Marta Camino-Serrano ◽  
Christine Hatté ◽  
Hector Morras ◽  
Lucas Moretti ◽  
...  

Abstract. Despite the importance of soil as a large component of the terrestrial ecosystems, the soil compartments are not well represented in the Land Surface Models (LSMs). Indeed, soils in current LSMs are generally represented based on a very simplified schema that can induce a misrepresentation of the deep dynamics of soil carbon. Here, we present a new version of the IPSL-Land Surface Model called ORCHIDEE-SOM, incorporating the 14C dynamic in the soil. ORCHIDEE-SOM, first, simulates soil carbon dynamics for different layers, down to 2 m depth. Second, concentration of dissolved organic carbon (DOC) and its transport are modeled. Finally, soil organic carbon (SOC) decomposition is considered taking into account the priming effect. After implementing the 14C in the soil module of the model, we evaluated model outputs against observations of soil organic carbon and 14C activity (F14C) for different sites with different characteristics. The model managed to reproduce the soil organic carbon stocks and the F14C along the vertical profiles. However, an overestimation of the total carbon stock was noted, but was mostly marked on the surface. Then, thanks to the introduction of 14C, it has been possible to highlight an underestimation of the age of carbon in the soil. Thereafter, two different tests on this new version have been established. The first was to increase carbon residence time of the passive pool and decrease the flux from the slow pool to the passive pool. The second was to establish an equation of diffusion, initially constant throughout the profile, making it vary exponentially as a function of depth. The first modifications did not improve the capacity of the model to reproduce observations whereas the second test showed a decrease of the soil carbon stock overestimation, especially at the surface and an improvement of the estimates of the carbon age. This assumes that we should focus more on vertical variation of soil parameters as a function of depth, mainly for diffusion, in order to upgrade the representation of global carbon cycle in LSMs, thereby helping to improve predictions of the future response of soil organic carbon to global warming.


Sign in / Sign up

Export Citation Format

Share Document