scholarly journals SOC stabilization mechanisms and temperature sensitivity in old terraced soils

2021 ◽  
Author(s):  
Pengzhi Zhao ◽  
Daniel J. Fallu ◽  
Sara Cucchiaro ◽  
Paolo Tarolli ◽  
Clive Waddington ◽  
...  

Abstract. Being the most common and widest spread man-made landform, terrace construction has resulted in an extensive perturbation of the land surface. Our mechanistic understanding of soil organic carbon (SOC) (de-) stabilization mechanisms and of the persistence of SOC stored in terraced soils, however, is far from complete. Here we explored the factors controlling SOC stability and temperature sensitivity (Q10) of abandoned prehistoric agricultural terrace soils in NE England, using soil fractionation and temperature sensitive incubation in combination with measurements of terrace soil burial age. Results showed that although buried terrace soils contained 1.7 times more unprotected SOC (i.e., coarse particulate organic carbon) than non-terraced soils at comparable soil depths, a significantly lower potential soil respiration was observed, relative to a control (non-terraced) profile. This suggests that burial of former topsoil due to terracing provided a mechanism for enhanced C stabilization. Furthermore, we observed a shift in SOC fraction composition from particulate organic C towards mineral protected C with increasing burial age. This clear shift to more processed recalcitrant SOC with soil burial age also contributes to SOC stability in terraced soils. Temperature sensitivity incubations revealed that the dominant controls on Q10 depend on the terrace soil burial age. At relatively younger ages of soil burial, the reduction of substrate availability due to SOC mineral protection with ageing attenuates the intrinsic Q10 of SOC decomposition. However, as terrace soil becomes older, SOC stocks in deep buried horizons are characterized by a higher temperature sensitivity, potentially resulting from the poor SOC quality (i.e., soil C : N ratio). In conclusion, terracing in our study site has stabilized SOC as a result of soil burial during terrace construction. The depth-age patterns of Q10 and SOC fraction composition of terraced soils observed in our study site differ from those seen in non-terraced soils and this has implications when assessing the effects of climate warming or terrace abandonment on the terrestrial C cycle.

2021 ◽  
Vol 18 (23) ◽  
pp. 6301-6312
Author(s):  
Pengzhi Zhao ◽  
Daniel Joseph Fallu ◽  
Sara Cucchiaro ◽  
Paolo Tarolli ◽  
Clive Waddington ◽  
...  

Abstract. Being the most common human-created landforms, terrace construction has resulted in an extensive perturbation of the land surface. However, our mechanistic understanding of soil organic carbon (SOC) (de-)stabilization mechanisms and the persistence of SOC stored in terraced soils is far from complete. Here we explored the factors controlling SOC stability and the temperature sensitivity (Q10) of abandoned prehistoric agricultural terrace soils in NE England using soil fractionation and temperature-sensitive incubation combined with terrace soil burial-age measurements. Results showed that although buried terrace soils contained 1.7 times more unprotected SOC (i.e., coarse particulate organic carbon) than non-terraced soils at comparable soil depths, a significantly lower potential soil respiration was observed relative to a control (non-terraced) profile. This suggests that the burial of former topsoil due to terracing provided a mechanism for stabilizing SOC. Furthermore, we observed a shift in SOC fraction composition from particulate organic C towards mineral-protected C with increasing burial age. This clear shift to more processed recalcitrant SOC with soil burial age also contributes to SOC stability in terraced soils. Temperature sensitivity incubations revealed that the dominant controls on Q10 depend on the terrace soil burial age. At relatively younger ages of soil burial, the reduction in substrate availability due to SOC mineral protection with aging attenuates the intrinsic Q10 of SOC decomposition. However, as terrace soil becomes older, SOC stocks in deep buried horizons are characterized by a higher temperature sensitivity, potentially resulting from the poor SOC quality (i.e., soil C:N ratio). In conclusion, terracing in our study site has stabilized SOC as a result of soil burial during terrace construction. The depth–age patterns of Q10 and SOC fraction composition of terraced soils observed in our study site differ from those seen in non-terraced soils, and this has implications when assessing the effects of climate warming and terrace abandonment on the terrestrial C cycle.


2021 ◽  
Author(s):  
Pengzhi Zhao ◽  
Daniel J. Fallu ◽  
Sara Cucchiaro ◽  
Paolo Tarolli ◽  
Clive Waddington ◽  
...  

<p>Being the most common and widest spread man-made landform, terrace construction has resulted in an extensive perturbation of the land surface. Our mechanistic understanding of the underlying soil organic carbon (SOC) (de-)stabilization mechanisms and of the persistence of SOC stored in terraced soils, however, is far from complete. Here we explored the factors controlling SOC stability and temperature sensitivity (Q<sub>10</sub>) of heterotrophic soil respiration of abandoned prehistoric agricultural terrace soils in NE England. For this we combined soil fractionation and temperature sensitive incubation experiments under idealized, well-aerated topsoil conditions with measurements of terrace soil burial age. Results showed that a substantial part of the SOC stock in these terraced soils (43.5± 5.5%) was found in buried horizons. A significantly lower soil potential respiration was observed for buried terrace soils, relative to a control (non-terraced) profile. This suggests that the burial of soils is an important mechanism to slow down the decomposition of SOC in terraced soils. Furthermore, we observed a shift in the SOC pool composition from particulate organic C to mineral carbon mineral protected C with increasing burial age creating energetic barriers for microorganisms to overcome. This clear shift to more processed recalcitrant SOC with terrace soil burial age also contributes to SOC stability in terraced soils. Temperature sensitivity incubations revealed that as terraced and buried soil becomes older, lower C quality in buried horizons leads to an increase in temperature sensitivity of SOC. In conclusion, terracing in our study site has stabilized SOC as a result of soil burial during terrace construction with evolution to a more biologically processed SOC pool with increasing terrace soil burial age. These depth-age patterns of Q<sub>10</sub> and SOC pool composition of terraced soils should be considered when assessing the effects of climate warming or terrace abandonment/removal on the terrestrial C cycle</p><p></p><p></p>


2018 ◽  
Vol 11 (2) ◽  
pp. 593-609 ◽  
Author(s):  
Mahdi Nakhavali ◽  
Pierre Friedlingstein ◽  
Ronny Lauerwald ◽  
Jing Tang ◽  
Sarah Chadburn ◽  
...  

Abstract. Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC) processes in the Joint UK Land Environment Simulator (JULES-DOCM) that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Geert Hensgens ◽  
Hjalmar Laudon ◽  
Mark S. Johnson ◽  
Martin Berggren

AbstractThe boreal forest is among the largest terrestrial biomes on earth, storing more carbon (C) than the atmosphere. Due to rapid climatic warming and enhanced human development, the boreal region may have begun transitioning from a net C sink to a net source. This raises serious concern that old biogenic soil C can be re-introduced into the modern C cycle in near future. Combining bio-decay experiments, mixing models and the Keeling plot method, we discovered a distinct old pre-bomb organic carbon fraction with high biodegradation rate. In total, 34 ± 12% of water-extractable organic carbon (WEOC) in podzols, one of the dominating boreal soil types, consisted of aged (~ 1000 year) labile C. The omission of this aged (i.e., Δ14C depleted) WEOC fraction in earlier studies is due to the co-occurrence with Δ14C enriched modern C formed following 1950s nuclear bomb testing masking its existence. High lability of aged soil WEOC and masking effects of modern Δ14C enriched C suggests that the risk for mobilization and re-introduction of this ancient C pool into the modern C cycle has gone undetected. Our findings have important implications for earth systems models in terms of climate-carbon feedbacks and the future C balance of the boreal forest.


Soil Research ◽  
2019 ◽  
Vol 57 (3) ◽  
pp. 294 ◽  
Author(s):  
Xiaojie Wang ◽  
Guanhong Chen ◽  
Renduo Zhang

The temperature sensitivity of multiple carbon (C) pools in the soil plays an important role in the C cycle and potential feedback to climate change. The aim of this study was to investigate the temperature sensitivity of different biochars in soil to better understand the temperature sensitivity of different soil C pools. Biochars were prepared using sugarcane residue at temperatures of 300, 500 and 800°C (representing different C pools) and C skeletons (representing the refractory C pool in biochar) were obtained from each biochar. The sugarcane residue, biochars and C skeletons were used as amendments in a simulated soil with microbes but without organic matter. The temperature sensitivity of the amended soils was characterised by their mineralisation rate changes in response to ambient temperatures. The temperature sensitivity of treatments with relatively refractory biochars was higher than that with labile biochars. The temperature sensitivity of treatments with biochars was lower than for their corresponding C skeletons. The different temperature sensitivity of treatments was attributable to the different internal C structures (i.e. the functional groups of C=C and aromatic structure) of amendments, determining the biodegradability of substrates. Dissolved organic matter and microbial enzyme activity of biochars were lower than those of corresponding C skeletons, and decreased with increasing pyrolysis temperature. The temperature sensitivities of treatments with biochars, C skeletons and sugarcane residue were negatively correlated with the properties of dissolved organic matter and microbial enzyme activities (especially dehydrogenase) in soil.


2019 ◽  
Vol 10 (2) ◽  
pp. 233-255 ◽  
Author(s):  
Efrén López-Blanco ◽  
Jean-François Exbrayat ◽  
Magnus Lund ◽  
Torben R. Christensen ◽  
Mikkel P. Tamstorf ◽  
...  

Abstract. There is a significant knowledge gap in the current state of the terrestrial carbon (C) budget. Recent studies have highlighted a poor understanding particularly of C pool transit times and of whether productivity or biomass dominate these biases. The Arctic, accounting for approximately 50 % of the global soil organic C stocks, has an important role in the global C cycle. Here, we use the CARbon DAta MOdel (CARDAMOM) data-assimilation system to produce pan-Arctic terrestrial C cycle analyses for 2000–2015. This approach avoids using traditional plant functional type or steady-state assumptions. We integrate a range of data (soil organic C, leaf area index, biomass, and climate) to determine the most likely state of the high-latitude C cycle at a 1∘ × 1∘ resolution and also to provide general guidance about the controlling biases in transit times. On average, CARDAMOM estimates regional mean rates of photosynthesis of 565 g C m−2 yr−1 (90 % confidence interval between the 5th and 95th percentiles: 428, 741), autotrophic respiration of 270 g C m−2 yr−1 (182, 397) and heterotrophic respiration of 219 g C m−2 yr−1 (31, 1458), suggesting a pan-Arctic sink of −67 (−287, 1160) g Cm−2 yr−1, weaker in tundra and stronger in taiga. However, our confidence intervals remain large (and so the region could be a source of C), reflecting uncertainty assigned to the regional data products. We show a clear spatial and temporal agreement between CARDAMOM analyses and different sources of assimilated and independent data at both pan-Arctic and local scales but also identify consistent biases between CARDAMOM and validation data. The assimilation process requires clearer error quantification for leaf area index (LAI) and biomass products to resolve these biases. Mapping of vegetation C stocks and change over time and soil C ages linked to soil C stocks is required for better analytical constraint. Comparing CARDAMOM analyses to global vegetation models (GVMs) for the same period, we conclude that transit times of vegetation C are inconsistently simulated in GVMs due to a combination of uncertainties from productivity and biomass calculations. Our findings highlight that GVMs need to focus on constraining both current vegetation C stocks and net primary production to improve a process-based understanding of C cycle dynamics in the Arctic.


2020 ◽  
Author(s):  
Eráclito Sousa-Neto ◽  
Luke Smallman ◽  
Jean Ometto ◽  
Mathew Williams

<p>Savannas are a major component of the world’s vegetation and cover a land surface of about 15 Mkm<sup>2</sup>, accounting for about 30% of the terrestrial primary production. In the South America, the Brazilian Savanna (Cerrado) is the second largest biome (2 Mkm<sup>2</sup>), after the Amazon biome, and a hotspot of biodiversity. The Cerrado region is heterogeneous, with savanna vegetation ranging from open grassland, through a gradient of increasing tree density to nearly closed-canopy woodland. The cerrado vegetation is markedly seasonal in phenology and is often burned, either naturally or as part of a management cycle. Due its large occupation, Cerrado have the potential to influence the regional and possibly the global energy, water and carbon (C) balances. The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of an ecosystem, and an important feature to correctly represent in terrestrial ecosystem models for carbon rates estimation, as well as their residence time, variation with climate and disturbance, and in order to make better forecasts. Such estimation in Cerrado regions remains still difficult given the lack of important soil and vegetation data. Previous studies have showed that the fluxes of water and C are closely related to each other, and to the diurnal cycle of solar radiation. However, there is no study clearly assessing the allocation of C through the different types of vegetation, either in the different types of physiognomies. To help estimating the C flows across the different C pools and types of vegetation, we are using Carbon Data Model Framework (CARDAMOM) which is a computer programme that retrieves terrestrial carbon (C) cycle variables by combining C cycle observations with a mass balance model. CARDAMOM produces global dynamic estimates of plant and soil C pools, their exchanges with each other and with the atmosphere, and C cycling variables for processes driving change. It also produces a C cycle analysis consistent with C measurements and climate, and it is suited for using with global-scale satellite observations such as aboveground biomass (ABG) or leaf area index (LAI). For that, we count on field data available (AGB, BGB) and satellite data (LAI, AGB, soil C), which will help to present robust analyses of C cycling across gradients of biomass in the Brazilian Cerrado.</p>


2002 ◽  
Vol 32 (5) ◽  
pp. 805-812 ◽  
Author(s):  
J S Bhatti ◽  
M J Apps ◽  
C Tarnocai

This study compared three estimates of carbon (C) contained both in the surface layer (0–30 cm) and the total soil pools at polygon and regional scales and the spatial distribution in the three prairie provinces of western Canada (Alberta, Saskatchewan, and Manitoba). The soil C estimates were based on data from (i) analysis of pedon data from both the Boreal Forest Transect Case Study (BFTCS) area and from a national-scale soil profile database; (ii) the Canadian Soil Organic Carbon Database (CSOCD), which uses expert estimation based on soil characteristics; and (iii) model simulations with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS2). At the polygon scale, good agreement was found between the CSOCD and pedon (the first method) total soil carbon values. Slightly higher total soil carbon values obtained from BFTCS averaged pedon data (the first method), as indicated by the slope of the regression line, may be related to micro- and meso-scale geomorphic and microclimate influences that are not accounted for in the CSOCD. Regional estimates of organic C from these three approaches for upland forest soils ranged from 1.4 to 7.7 kg C·m–2 for the surface layer and 6.2 to 27.4 kg C·m–2 for the total soil. In general, the CBM-CFS2 simulated higher soil C content compared with the field observed and CSOCD soil C estimates, but showed similar patterns in the total soil C content for the different regions. The higher soil C content simulated with CBM-CFS2 arises in part because the modelled results include forest floor detritus pool components (such as coarse woody debris, which account for 4–12% of the total soil pool in the region) that are not included in the other estimates. The comparison between the simulated values (the third method) and the values obtained from the two empirical approaches (the first two methods) provided an independent test of CBM-CFS2 soil simulations for upland forests soils. The CSOCD yielded significantly higher C content for peatland soils than for upland soils, ranging from 14.6 to 28 kg C·m–2 for the surface layer and 60 to 181 kg C·m–2 for the total peat soil depth. All three approaches indicated higher soil carbon content in the boreal zone than in other regions (subarctic, grassland).


2021 ◽  
Author(s):  
Mengyang You ◽  
Xia Zhu-Barker ◽  
Timothy A. Doane ◽  
William R. Horwath

AbstractThe interaction of organic carbon (OC) with clay and metals stabilizes soil carbon (C), but the influence of specific clay-metal-OC assemblages (flocs) needs further evaluation. This study aimed to investigate the stability of flocs in soil as affected by external C inputs. Flocs representing OC-mineral soil fractions were synthesized using dissolved organic C (DOC) combined with kaolinite (1:1 layer structure) or montmorillonite (2:1 layer structure) clays in the absence or presence of two levels of Fe (III) (named low or high Fe). Flocs were mixed with soil (classified as Luvisol) and incubated with or without 13C labelled plant residue (i.e., ryegrass) for 30 days. The CO2 emissions and DOC concentrations as well as their 13C signatures from all treatments were examined. Total C mineralization from flocs was approximately 70% lower than non-flocced DOC. The flocs made with montmorillonite had 16–43% lower C mineralization rate than those made with kaolinite with no Fe or low Fe. However, when flocs were made with high Fe, clay mineralogy did not significantly affect total C mineralization. A positive priming effect (PE) of flocs on native soil OC was observed in all treatments, with a stronger PE found in lower Fe treatments. The high-Fe clay flocs inhibited ryegrass decomposition, while the flocs made without clay had no impact on it. Interestingly, flocs significantly decreased the PE of ryegrass on native soil OC decomposition. These results indicate that the adsorption of DOC onto clay minerals in the presence of Fe (III) stabilizes it against decomposition processes and its stability increases as Fe in flocs increases. Flocs also protect soil OC from the PE of external degradable plant C input. This study showed that Fe level and clay mineralogy play an important role in controlling soil C stability.


2016 ◽  
Author(s):  
Zhenke Zhu ◽  
Guanjun Zeng ◽  
Tida Ge ◽  
Yajun Hu ◽  
Chengli Tong ◽  
...  

Abstract. The input of recently photosynthesized C has significant implications on soil organic carbon sequestration, and in paddy soils, both plants and soil microbes contribute to the overall C input. In the present study, we investigated the fate and priming effect of organic C from different sources by conducting a 300-d incubation study with four different 13C-labelled substrates: rice shoots (Shoot-C), rice roots (Root-C), rice rhizodeposits (Rhizo-C), and microbe-assimilated C (Micro-C). The efflux of both 13CO2 and 13CH4 indicated that the mineralization of C in Shoot-C-, Root-C-, Rhizo-C-, and Micro-C-treated soils rapidly increased at the beginning of the incubation and then decreased gradually afterwards. In addition, the highest level of C mineralization was observed in Root-C-treated soil (45.4 %), followed by Shoot-C- (31.9 %), Rhizo-C- (7.9 %), and Micro-C-treated (7.7 %) soils, which corresponded with mean residence times of 33.4, 46.1, 62.9, and 192 d, respectively. Furthermore, the cumulative mineralization of native soil organic carbon in Shoot-C-treated soils was 1.48- fold higher than in untreated soils, and the priming effect of Shoot-C on CO2 and CH4 emission was strongly positive over the entire incubation. However, Root-C failed to exhibit a significant priming effect, which suggests that it could potentially be used to mitigate CH4 emission. Although the total C contents of Rhizo-C- (1.89 %) and Micro-C-treated soils (1.9 %) were higher than those of untreated soil (1.8 %), no significant differences in total C emissions were observed. However, the 13C emissions of Rhizo-C- and Micro-C-treated soils gradually increased over the entire incubation period, which indicated that soil organic C-derived emissions were lower in Rhizo-C- and Micro-C-treated soils than in untreated soil, and that rhizodeposits and microbe-assimilated C could be used to reduce the mineralization of native soil organic carbon and to effectively improve soil C sequestration. The contrasting behaviours of the different photosynthesized C substrates suggests that recycling rice roots in paddies is more beneficial than recycling shoots and reveals the importance of increasing rhizodeposits and microbe-assimilated C in paddy soils via nutrient management.


Sign in / Sign up

Export Citation Format

Share Document