scholarly journals Mechanisms of methane transport through <i>Populus trichocarpa</i>

Author(s):  
Ellynne Kutschera ◽  
Aslam Khalil ◽  
Andrew Rice ◽  
Todd Rosenstiel

Abstract. Although the dynamics of methane (CH4) emission from croplands and wetlands have been fairly well investigated, the contribution of trees to global CH4 emission and the mechanisms of tree transport are relatively unknown. CH4 emissions from the common wetland tree species Populus trichocarpa (black cottonwood) native to the Pacific Northwest were measured under hydroponic conditions in order to separate plant transport mechanisms from the influence of soil processes. Roots were exposed to CH4 enriched water and canopy emissions of CH4 were measured. The average flux for 34 trials (at temperatures ranging from 17 to 25 °C) was 2.8 ± 2.2 μg CH4 min−1 (whole canopy). Flux increased with temperature. Compared to the isotopic composition of root water CH4, δ13C values were depleted for canopy CH4 where the warmest temperatures (24.4–28.7 °C) resulted in an epsilon of 2.8 ± 4.7 ‰; midrange temperatures (20.4–22.1 °C) produced an epsilon of 7.5 ± 3.1 ‰; and the coolest temperatures (16.0–19.1 °C) produced an epsilon of 10.2 ± 3.2 ‰. From these results it is concluded that there are likely multiple transport processes at work in CH4 transport through trees and the dominance of these processes changes with temperature. The transport mechanisms that dominate at low temperature and low flux result in a larger fractionation, while the transport mechanisms that prevail at high temperature and high flux produce a small fractionation. Further work would investigate what combination of mechanisms are specifically engaged in transport for a given fractionation of emitted CH4.

Plant Disease ◽  
2021 ◽  
Author(s):  
Brandon Alveshere ◽  
Patrick Bennett ◽  
Mee-Sook Kim ◽  
Ned B. Klopfenstein ◽  
Jared M. LeBoldus

Populus trichocarpa Torr. and Gray (black cottonwood) is an economically and ecologically important tree species native to western North America. It serves as a model tree species in biology and genetics due to its relatively small genome size, rapid growth, and early reproductive maturity (Jansson and Douglas 2007). Black cottonwood is susceptible to root rot caused by at least one species of Armillaria (Raabe 1962), a globally distributed genus that exhibits diverse ecological behaviors (Klopfenstein et al. 2017) and infects numerous woody plant species (Raabe 1962). However, several Armillaria spp. have been isolated from Populus spp. in North America (Mallet 1990), and the most recent report of Armillaria on P. trichocarpa used the now ambiguated name A. mellea (Vahl.) Quel. (see Raabe 1962). In April 2016, mycelial fans and rhizomorphs of an unknown Armillaria species (isolate WV-ARR-3) were collected from P. trichocarpa in a riparian hardwood stand ca. 5.5 km east of Springfield, Oregon, USA (44°3'21.133"N, 122°49'39.935"W). The host was dominant in the canopy, large in diameter (ca. 90-cm dbh) relative to neighboring trees, and exhibited minimal crown dieback (ca. < 5%). A mycelial fan was observed destroying living cambium beneath the inner bark, indicating pathogenicity. The isolate was cultured on malt extract medium (3% malt extract, 3% dextrose, 1% peptone, and 1.5 % agar) and identified as A.cepistipes on the basis of somatic pairing tests and translation elongation factor 1α (tef1) sequences (GenBank Accession No. MK172784). DNA extraction, PCR, and tef1 sequencing followed protocols of Elías-Román et al. (2018). From nine replications of somatic incompatibility tests (18 tester isolates representing six North American Armillaria spp.), the isolate showed high intraspecific compatibility (colorless antagonism) with three A. cepistipes tester isolates (78%), but low compatibility with the other Armillaria spp. (0 – 33%) that occur in the region. Isolate WV-ARR-3 yielded tef1 sequences with a 99% identity to A. cepistipes (GenBank Accession Nos. JF313115 and JF313121). A second isolate (WV-ARR-1; GenBank Accession No. MK172783) with a nearly identical sequence was collected from a maturing P. trichocarpa in a riparian stand ca. 8 km northeast of Monroe, Oregon (44°21’47.57”N, 123°13’14.415”W) along the Willamette River, downstream from the McKenzie river tributary where WV-ARR-3 was collected. Armillaria cepistipes has been reported on Alnus rubra (red alder) in Washington, USA (Banik et al. 1996) and on broad-leaved trees in British Columbia, Canada (Allen et al. 1996). It is generally considered to be a weak pathogen on broad-leaved trees in the Pacific Northwest, but it is also associated with pathogenicity on both coniferous and deciduous trees in Europe (e.g., Lygis et al. 2005). However, a recent phylogenetic study suggested that North American A. cepistipes is phylogenetically distinct from Eurasian A. cepistipes (Klopfenstein et al. 2017), butadditional studies are needed to determine the formal taxonomic status of North American A. cepistipes. To our knowledge, A. cepistipes has not been previously confirmed on P. trichocarpa in the U.S.A. or formally reported as a pathogen of any Populus species in North America. Continued studies are needed to determine the distribution, host range, and ecological role of A. cepistipes in riparian forests of the Pacific Northwest, while monitoring its populations under changing climates.


2009 ◽  
Vol 39 (3) ◽  
pp. 519-525 ◽  
Author(s):  
Chang-Yi Xie ◽  
Cheng C. Ying ◽  
Alvin D. Yanchuk ◽  
Diane L. Holowachuk

Genetic differentiation of black cottonwood ( Populus balsamifera subsp. trichocarpa (Torr. & A. Gray ex Hook) Brayshaw) across a “no-cottonwood” belt on the coast of central British Columbia (BC), Canada, was examined using data on 3 year height, severity of infection by Valsa sordida Nitschke and Melampsora occidentalis H. Jacks., and abnormality of leaf flushing. The data were collected in a common-garden test consisting of 180 provenances of 36 drainages ranging from northern BC to Oregon, USA. The results demonstrated an ecotypic mode, north–south regional differentiation. Valsa sordida and M. occidentalis infected 41% and 89%, respectively, of the trees from the northern region, while 66% showed flushing abnormality. In contrast, only 1% and 27% of their southern counterparts were infected by the same diseases, and 1% had abnormal flushing. Trees from the northern region averaged 87% shorter than those from the south. Regional differentiation accounted for the highest amount of variation observed in all traits, with 60% in 3 year height, 34% in V. sordida, 76% in M. occidentalis, and 50% in abnormal leaf flushing. Regression analysis revealed geographic patterns that essentially reflected regional differentiation along the no-cottonwood belt. The species’ distribution biography, ecological characteristics, and life history suggest that restricted gene migration was the main factor responsible for the observed geographic patterns of genetic differentiation.


Plant Disease ◽  
1998 ◽  
Vol 82 (5) ◽  
pp. 590-590 ◽  
Author(s):  
G. Newcombe

Poplar leaf blight caused by Linospora tetraspora G. E. Thompson (Ascomycetes, Valsaceae) is widespread on Populus balsamifera in Canada from Quebec to British Columbia (1). The only United States records of this northerly fungus are from Vermont, Wisconsin, and Alaska (1,2). There are no records of this fungus on the Pacific Coast south of British Columbia, despite the presence of susceptible hosts (i.e., Populus trichocarpa and its hybrids). However, in September of 1997, the disease was observed in a hybrid poplar plantation at latitude 47.9°N and longitude 122.1°W near Snohomish, Washington. Blight affected the lower crown of trees in their second year of growth. Leaf lesions, with their characteristic black stromata, were easily distinguished from symptoms of other diseases. Some individual lesions of L. tetraspora affected entire leaf laminae, but there appeared to be little premature defoliation at the time of observation. Populus trichocarpa × P. deltoides hybrids were more commonly blighted than were P. trichocarpa × P. maximowiczii hybrids (i.e., 13/18 clones affected versus 4/11, respectively). A voucher specimen was deposited in the Herbarium at the Pacific Forestry Centre (DAVFP 25289). References: (1) M. E. Barr. Mycol. Mem. No. 7:130, 1978. (2) D. F. Farr. et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN.


2000 ◽  
Vol 30 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Thaddeus McCamant ◽  
R Alan Black

Freezing tolerance was studied in laboratory and field tests using black cottonwood, Populus trichocarpa Torr. & Gray, clones collected from eight populations within the coastal, montane, and inland regions of the Pacific Northwest. Freezing tolerance varied among different populations and was dependent on growing environment. Clones from coastal populations grown in a coastal common garden (Puyallup, Wash.) had 50% less injury in laboratory tests compared with the same clones grown in an inland common garden (Pullman, Wash.). In contrast, clones from inland populations grown in an inland common garden had 50% less injury in laboratory tests compared with the same clones grown in a coastal common garden. Freezing tolerance also varied between coastal populations. In field tests at the inland common garden, clones from inland and montane populations had less freezing injury compared with clones from coastal populations. Leaves on 50% of the clones with coastal origins were killed by the first fall frosts compared with 25% for clones with inland origins. Subsequently, 50% of the coastal clones exhibited winter injury following the winters of 1993-1994 and 1994-1995 at the inland common garden. Clones from inland populations exhibited little or no winter injury. The specific tissues injured during freezing tests varied among clones. Populus trichocarpa is a species offering considerable variation for selection to local environments, and therefore, the source of material should be an important consideration in hybrid poplar breeding programs.


2015 ◽  
Vol 387 ◽  
pp. 146
Author(s):  
Byron A. Steinman ◽  
Mark B. Abbott ◽  
Michael E. Mann ◽  
Joseph D. Ortiz ◽  
Lesleigh Anderson ◽  
...  

2010 ◽  
Vol 25 (2) ◽  
pp. 73-80 ◽  
Author(s):  
Eini C. Lowell ◽  
Dennis Dykstra ◽  
George McFadden

Abstract Bear activity resulting in injury to Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) trees has been documented as early as the mid-1850s in the Pacific Northwest. The study reported in this article was designed to help managers decide whether the common practice of removing the damaged but potentially valuable butt section of the bottom log and leaving it in the woods is warranted. Thirty-four damaged and 28 undamaged trees were selected from three sites in western Washington where bear damage has been a persistent problem. Trees were felled and bucked into 16-ft lengths. The damaged trees in the sample had been injured at ages between 10 and 15 years at two sites and between 10 and 65 years at the third site. The primary scaling deductions were for ring and scar defects. The 16-ft butt logs from the damaged and undamaged trees were sawn into dimension lumber. Bear-damaged logs were found to have lower cubic volume recovery than undamaged logs having the same small-end diameters. Lumber grade recovery was also influenced by bear damage; logs from damaged trees had a lower percentage of high-value lumber. The analysis suggests that the optimal harvesting policy is to haul the entire butt log to the mill rather than leaving the damaged portion in the woods. Although the value of the damaged portion is lower, most of the lumber recovered from that section can be used, with only a modest reduction in grade and value.


2019 ◽  
Vol 39 (4) ◽  
pp. 452
Author(s):  
Margaret H. Massie ◽  
Todd M. Wilson ◽  
Anita T. Morzillo ◽  
Emilie B. Henderson

Sign in / Sign up

Export Citation Format

Share Document