scholarly journals Biological soil crust communities 12–16 years after wildfires in Idaho, USA

2017 ◽  
Author(s):  
Heather T. Root ◽  
John C. Brinda ◽  
E. Kyle Dodson

Abstract. Changing fire regimes in western North America may impact biological soil crust (BSC) communities that influence many ecosystem functions, such as soil stability and C and N cycling. However, longer-term effects of wildfire on BSC abundance, species richness, functional groups, and ecosystem functions after wildfire (i.e. BSC resilience) is still poorly understood. We sampled BSC lichen and bryophyte communities at four sites in Idaho, USA, within foothill steppe communities that included wildfires from 12 to 16 years old. We established six plots outside each burn perimeter and compared them with six plots of varying severity within each fire perimeter at each site. BSC cover was most strongly negatively impacted by wildfire at sites that had well-developed BSC communities in adjacent unburned plots. BSC species richness was estimated to be 65 % greater in unburned plots compared with burned plots. In contrast, there was no evidence that vascular plant functional groups or fire severity (as measured by satellite metrics dNBR or RdNBR) significantly affected longer-term BSC responses. Three BSC functional groups (squamulose lichens, vagrant lichens, and tall turf mosses) exhibited a significant decrease in abundance in burned areas relative to adjacent unburned areas. The decreases in BSC cover and richness along with decreased abundance of several functional groups suggest that wildfire can negatively impact ecosystem function in these semi-arid ecosystems for at least one to two decades. This is a concern given that increased fire frequency is predicted for the region due to exotic grass invasion and climate change.

2017 ◽  
Vol 14 (17) ◽  
pp. 3957-3969 ◽  
Author(s):  
Heather T. Root ◽  
John C. Brinda ◽  
E. Kyle Dodson

Abstract. Changing fire regimes in western North America may impact biological soil crust (BSC) communities that influence many ecosystem functions, such as soil stability and C and N cycling. However, longer-term effects of wildfire on BSC abundance, species richness, functional groups, and ecosystem functions after wildfire (i.e., BSC resilience) are still poorly understood. We sampled BSC lichen and bryophyte communities at four sites in Idaho, USA, within foothill steppe communities that included wildfires from 12 to 16 years old. We established six plots outside each burn perimeter and compared them with six plots of varying severity within each fire perimeter at each site. BSC cover was most strongly negatively impacted by wildfire at sites that had well-developed BSC communities in adjacent unburned plots. BSC species richness was estimated to be 65 % greater in unburned plots compared with burned plots, and fire effects did not vary among sites. In contrast, there was no evidence that vascular plant functional groups or fire severity (as measured by satellite metrics differenced normalized burn ratio (dNBR) or relativized differenced normalized burn ratio (RdNBR)) significantly affected longer-term BSC responses. Three large-statured BSC functional groups that may be important in controlling wind and water erosion (squamulose lichens, vagrant lichens, and tall turf mosses) exhibited a significant decrease in abundance in burned areas relative to adjacent unburned areas. The decreases in BSC cover and richness along with decreased abundance of several functional groups suggest that wildfire can negatively impact ecosystem function in these semiarid ecosystems for at least 1 to 2 decades. This is a concern given that increased fire frequency is predicted for the region due to exotic grass invasion and climate change.


2010 ◽  
Vol 365 (1549) ◽  
pp. 2057-2070 ◽  
Author(s):  
Fernando T. Maestre ◽  
Matthew A. Bowker ◽  
Cristina Escolar ◽  
María D. Puche ◽  
Santiago Soliveres ◽  
...  

Climate change will exacerbate the degree of abiotic stress experienced by semi-arid ecosystems. While abiotic stress profoundly affects biotic interactions, their potential role as modulators of ecosystem responses to climate change is largely unknown. Using plants and biological soil crusts, we tested the relative importance of facilitative–competitive interactions and other community attributes (cover, species richness and species evenness) as drivers of ecosystem functioning along stress gradients in semi-arid Mediterranean ecosystems. Biotic interactions shifted from facilitation to competition along stress gradients driven by water availability and temperature. These changes were, however, dependent on the spatial scale and the community considered. We found little evidence to suggest that biotic interactions are a major direct influence upon indicators of ecosystem functioning (soil respiration, organic carbon, water-holding capacity, compaction and the activity of enzymes related to the carbon, nitrogen and phosphorus cycles) along stress gradients. However, attributes such as cover and species richness showed a direct effect on ecosystem functioning. Our results do not agree with predictions emphasizing that the importance of plant–plant interactions will be increased under climate change in dry environments, and indicate that reductions in the cover of plant and biological soil crust communities will negatively impact ecosystems under future climatic conditions.


2017 ◽  
Vol 8 (4) ◽  
pp. 633-638
Author(s):  
V. V. Shcherbyna ◽  
I. A. Maltseva ◽  
Y. I. Maltsev ◽  
A. N. Solonenko

The study of the processes of restoration of species richness and productivity of steppe ecosystems after fires is an urgent problem that affects not only the conservation of biodiversity but also the maintenance of pasture resources. This article presents the results of a study of post-pyrogenic effects in steppe ecosystems, taking into account changes in the species composition of cyanoprokaryotes and algae that are art of the biological soil crust, which performs ecologically important functions in xerophytic ecosystems. The investigations were carried out in virgin and post-pyrogenic steppe ecosystems of the “Troitsk Clough” reserve (Zaporizhia region, Ukraine). For three years, the dynamics of the projective cover and the height of the vegetation cover in virgin areas of herbs-fescue-feather-grass and fescue-feather-grass steppes was studied as well as within two ecosystems of post-pyrogenic development after fires that occurred in the spring and winter periods. We discovered that restoration of the herbs-fescue-feather-grass and fescue-feather-grass steppes after fires occurs at different rates. The cause of the slow restoration of vegetation cover can be its severe damage by fire at the beginning of the vegetation season and the development of erosion processes. The number of species of cyanoprokaryotes and algae in the biological soil crust of virgin and post-pyrogenic ecosystems is not significantly different. It varies from 35 to 49 species. The greatest diversity is noted for Cyanoprokaryota. Chlorophyta is in the second place. Among the dominants, the filamentous forms of Cyanoprokaryota prevail. Nostoc edaphicum was noted as a nitrogen fixing representative. The similarity of the species lists of cyanoprokaryotes and algae of post-pyrogenic and virgin ecosystems, according to the calculated Jaccard coefficient, varies from 49.1% to 55.3%. This indicates a strong specificity of the composition of cyanoprokaryotes and algae in post-pyrogenic biological soil crusts. Changes in their composition reflect different stages of post-pyrogenic succession. In the first year after a fire, there is a slight increase in species richness, which is a consequence of the favorable effect of increasing the amount of mineral substances in the soil after the organic matter has burned out. The “pioneer” group includes: Phormidium autumnale, Ph. dimorphum, Ph. retzii, Ph. (Leptolyngbya) henningsii, Luticola mutica, Hantzschia amphioxys. Gradually this effect is leveled and the species richness of cyanoprokaryotes and algae is stabilized at a level peculiar for this type of ecosystem. 


2019 ◽  
Vol 30 (4) ◽  
pp. 756-764
Author(s):  
Emma K. Steggles ◽  
José M. Facelli ◽  
Phillip J. Ainsley ◽  
Leanne M. Pound

2021 ◽  
Vol 36 (5) ◽  
pp. 1391-1407
Author(s):  
Megan J. McNellie ◽  
Ian Oliver ◽  
Simon Ferrier ◽  
Graeme Newell ◽  
Glenn Manion ◽  
...  

Abstract Context Ensembles of artificial neural network models can be trained to predict the continuous characteristics of vegetation such as the foliage cover and species richness of different plant functional groups. Objectives Our first objective was to synthesise existing site-based observations of native plant species to quantify summed percentage foliage cover and species richness within four functional groups and in totality. Secondly, we generated spatially-explicit, continuous, landscape-scale models of these functional groups, accompanied by maps of the model residuals to show uncertainty. Methods Using a case study from New South Wales, Australia, we aggregated floristic observations from 6806 sites into four common plant growth forms (trees, shrubs, grasses and forbs) representing four different functional groups. We coupled these response data with spatially-complete surfaces describing environmental predictors and predictors that reflect landscape-scale disturbance. We predicted the distribution of foliage cover and species richness of these four plant functional groups over 1.5 million hectares. Importantly, we display spatially explicit model residuals so that end-users have a tangible and transparent means of assessing model uncertainty. Results Models of richness generally performed well (R2 0.43–0.63), whereas models of cover were more variable (R2 0.12–0.69). RMSD ranged from 1.42 (tree richness) to 29.86 (total native cover). MAE ranged from 1.0 (tree richness) to 20.73 (total native foliage cover). Conclusions Continuous maps of vegetation attributes can add considerable value to existing maps and models of discrete vegetation classes and provide ecologically informative data to support better decisions across multiple spatial scales.


2021 ◽  
Author(s):  
Megan J McNellie ◽  
Josh Dorrough ◽  
Ian Oliver ◽  
Jian DL Yen ◽  
Simon Ferrier ◽  
...  

Abstract ContextThe draft post-2020 Global Biodiversity Framework aims to achieve a 15% net gain in the area, connectivity and integrity of natural systems by 2050. ObjectivesFirst, we analyse the complexity (foliage cover) and composition (native species richness) of 6 plant functional groups relative to their empirically defined benchmark. Second, we extrapolate the spatial patterns in foliage cover and species richness to predict where different plant functional groups are above or below benchmark as spatially-explicit, continuous characteristics across the landscape.MethodsWe assess the integrity of vegetation relative to a numerical benchmark using the log of the response ratio (LRR) to reflect the proportional change in the response variable. We use ensembles of artificial neural networks to build spatially-explicit, continuous, landscape-scale models of cover and species richness to assess locations where functional groups meet or exceed benchmarks.ResultsModels of vegetation cover LRR performed well (R2 0.79 – 0.88), whereas models of the vegetation richness LRR were more variable (R2 0.57 – 0.80). Predicted patterns show that across the landscape (11.5 million ha), there is a larger area that meets or exceeds the cover benchmarks (approximately 112 000 ha or 1%), and an order of magnitude lower (approximately 10 000 ha or 0.1%) for richness benchmarks. ConclusionsSpatially explicit maps of vegetation integrity can provide important information to complement assessments of area and connectivity. Our results highlight that net gains in the area, connectivity and integrity of ecosystems will require significant investment in restoration.


2011 ◽  
Vol 99 (3) ◽  
pp. 678-688 ◽  
Author(s):  
John A. Arnone ◽  
Richard L. Jasoni ◽  
Annmarie J. Lucchesi ◽  
Jessica D. Larsen ◽  
Elizabeth A. Leger ◽  
...  

2007 ◽  
Vol 16 (3) ◽  
pp. 317 ◽  
Author(s):  
Boyd R. Wright ◽  
Peter J. Clarke

The hummock grasslands of arid Australia are fire-prone ecosystems in which the perennial woody plants mostly resprout after fire. The resprouting ability among these species is poorly understood in relation to environmental variation; consequently, little is known about the impacts that contemporary fire regimes are having on vegetation within these systems. We examined the resprouting ability of adults and juveniles of four widespread Acacia species (A. aneura, A. kempeana, A. maitlandii, A. melleodora) by experimentally testing the effects of fire severity, interval and season. We found that fire severity and season strongly affected survival, but the magnitude of the effects was variable among the species. Unexpectedly, a short fire interval of 2 years did not have a strong negative effect on resprouting of any species. Fire severity had variable effects among the four species, with those species with more deeply buried buds being more resilient to high-severity soil heating than those with shallow buds. Season of fire also strongly affected survival of some species, and we propose that seasonal variation in soil heating and soil moisture mediated these effects. The species by environment interactions we observed within one functional group (resprouters with a soil-stored seed bank) and in one genus suggest that modelling landscape response to fire regimes will be complex in these arid ecosystems. We predict, however, that the dominant resprouting acacias in hummock grasslands of central Australia are highly resilient to a range of fire regimes.


2019 ◽  
Vol 447 (1-2) ◽  
pp. 379-392 ◽  
Author(s):  
Lina Zhao ◽  
Yubing Liu ◽  
Zengru Wang ◽  
Shiwei Yuan ◽  
Jinghua Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document