scholarly journals Extending vegetation site data and ensemble models to predict patterns of foliage cover and species richness for plant functional groups

2021 ◽  
Vol 36 (5) ◽  
pp. 1391-1407
Author(s):  
Megan J. McNellie ◽  
Ian Oliver ◽  
Simon Ferrier ◽  
Graeme Newell ◽  
Glenn Manion ◽  
...  

Abstract Context Ensembles of artificial neural network models can be trained to predict the continuous characteristics of vegetation such as the foliage cover and species richness of different plant functional groups. Objectives Our first objective was to synthesise existing site-based observations of native plant species to quantify summed percentage foliage cover and species richness within four functional groups and in totality. Secondly, we generated spatially-explicit, continuous, landscape-scale models of these functional groups, accompanied by maps of the model residuals to show uncertainty. Methods Using a case study from New South Wales, Australia, we aggregated floristic observations from 6806 sites into four common plant growth forms (trees, shrubs, grasses and forbs) representing four different functional groups. We coupled these response data with spatially-complete surfaces describing environmental predictors and predictors that reflect landscape-scale disturbance. We predicted the distribution of foliage cover and species richness of these four plant functional groups over 1.5 million hectares. Importantly, we display spatially explicit model residuals so that end-users have a tangible and transparent means of assessing model uncertainty. Results Models of richness generally performed well (R2 0.43–0.63), whereas models of cover were more variable (R2 0.12–0.69). RMSD ranged from 1.42 (tree richness) to 29.86 (total native cover). MAE ranged from 1.0 (tree richness) to 20.73 (total native foliage cover). Conclusions Continuous maps of vegetation attributes can add considerable value to existing maps and models of discrete vegetation classes and provide ecologically informative data to support better decisions across multiple spatial scales.

2021 ◽  
Author(s):  
Megan J McNellie ◽  
Josh Dorrough ◽  
Ian Oliver ◽  
Jian DL Yen ◽  
Simon Ferrier ◽  
...  

Abstract ContextThe draft post-2020 Global Biodiversity Framework aims to achieve a 15% net gain in the area, connectivity and integrity of natural systems by 2050. ObjectivesFirst, we analyse the complexity (foliage cover) and composition (native species richness) of 6 plant functional groups relative to their empirically defined benchmark. Second, we extrapolate the spatial patterns in foliage cover and species richness to predict where different plant functional groups are above or below benchmark as spatially-explicit, continuous characteristics across the landscape.MethodsWe assess the integrity of vegetation relative to a numerical benchmark using the log of the response ratio (LRR) to reflect the proportional change in the response variable. We use ensembles of artificial neural networks to build spatially-explicit, continuous, landscape-scale models of cover and species richness to assess locations where functional groups meet or exceed benchmarks.ResultsModels of vegetation cover LRR performed well (R2 0.79 – 0.88), whereas models of the vegetation richness LRR were more variable (R2 0.57 – 0.80). Predicted patterns show that across the landscape (11.5 million ha), there is a larger area that meets or exceeds the cover benchmarks (approximately 112 000 ha or 1%), and an order of magnitude lower (approximately 10 000 ha or 0.1%) for richness benchmarks. ConclusionsSpatially explicit maps of vegetation integrity can provide important information to complement assessments of area and connectivity. Our results highlight that net gains in the area, connectivity and integrity of ecosystems will require significant investment in restoration.


2017 ◽  
Author(s):  
Heather T. Root ◽  
John C. Brinda ◽  
E. Kyle Dodson

Abstract. Changing fire regimes in western North America may impact biological soil crust (BSC) communities that influence many ecosystem functions, such as soil stability and C and N cycling. However, longer-term effects of wildfire on BSC abundance, species richness, functional groups, and ecosystem functions after wildfire (i.e. BSC resilience) is still poorly understood. We sampled BSC lichen and bryophyte communities at four sites in Idaho, USA, within foothill steppe communities that included wildfires from 12 to 16 years old. We established six plots outside each burn perimeter and compared them with six plots of varying severity within each fire perimeter at each site. BSC cover was most strongly negatively impacted by wildfire at sites that had well-developed BSC communities in adjacent unburned plots. BSC species richness was estimated to be 65 % greater in unburned plots compared with burned plots. In contrast, there was no evidence that vascular plant functional groups or fire severity (as measured by satellite metrics dNBR or RdNBR) significantly affected longer-term BSC responses. Three BSC functional groups (squamulose lichens, vagrant lichens, and tall turf mosses) exhibited a significant decrease in abundance in burned areas relative to adjacent unburned areas. The decreases in BSC cover and richness along with decreased abundance of several functional groups suggest that wildfire can negatively impact ecosystem function in these semi-arid ecosystems for at least one to two decades. This is a concern given that increased fire frequency is predicted for the region due to exotic grass invasion and climate change.


2011 ◽  
Vol 99 (3) ◽  
pp. 678-688 ◽  
Author(s):  
John A. Arnone ◽  
Richard L. Jasoni ◽  
Annmarie J. Lucchesi ◽  
Jessica D. Larsen ◽  
Elizabeth A. Leger ◽  
...  

2009 ◽  
Vol 46 (2) ◽  
pp. 426-433 ◽  
Author(s):  
T. J. Mason ◽  
K. French ◽  
W. M. Lonsdale

2010 ◽  
Vol 3 (3) ◽  
pp. 294-300 ◽  
Author(s):  
Roger L. Sheley ◽  
Jeremy James

AbstractUnderstanding the relative importance of various functional groups in minimizing invasion by medusahead is central to increasing the resistance of native plant communities. The objective of this study was to determine the relative importance of key functional groups within an intact Wyoming big sagebrush–bluebunch wheatgrass community type on minimizing medusahead invasion. Treatments consisted of removal of seven functional groups at each of two sites, one with shrubs and one without shrubs. Removal treatments included (1) everything, (2) shrubs, (3) perennial grasses, (4) taprooted forbs, (5) rhizomatous forbs, (6) annual forbs, and (7) mosses. A control where nothing was removed was also established. Plots were arranged in a randomized complete block with 4 replications (blocks) at each site. Functional groups were removed beginning in the spring of 2004 and maintained monthly throughout each growing season through 2009. Medusahead was seeded at a rate of 2,000 seeds m−2 (186 seeds ft−2) in fall 2005. Removing perennial grasses nearly doubled medusahead density and biomass compared with any other removal treatment. The second highest density and biomass of medusahead occurred from removing rhizomatous forbs (phlox). We found perennial grasses played a relatively more significant role than other species in minimizing invasion by medusahead. We suggest that the most effective basis for establishing medusahead-resistant plant communities is to establish 2 or 3 highly productive grasses that are complementary in niche and that overlap that of the invading species.


2017 ◽  
Vol 14 (17) ◽  
pp. 3957-3969 ◽  
Author(s):  
Heather T. Root ◽  
John C. Brinda ◽  
E. Kyle Dodson

Abstract. Changing fire regimes in western North America may impact biological soil crust (BSC) communities that influence many ecosystem functions, such as soil stability and C and N cycling. However, longer-term effects of wildfire on BSC abundance, species richness, functional groups, and ecosystem functions after wildfire (i.e., BSC resilience) are still poorly understood. We sampled BSC lichen and bryophyte communities at four sites in Idaho, USA, within foothill steppe communities that included wildfires from 12 to 16 years old. We established six plots outside each burn perimeter and compared them with six plots of varying severity within each fire perimeter at each site. BSC cover was most strongly negatively impacted by wildfire at sites that had well-developed BSC communities in adjacent unburned plots. BSC species richness was estimated to be 65 % greater in unburned plots compared with burned plots, and fire effects did not vary among sites. In contrast, there was no evidence that vascular plant functional groups or fire severity (as measured by satellite metrics differenced normalized burn ratio (dNBR) or relativized differenced normalized burn ratio (RdNBR)) significantly affected longer-term BSC responses. Three large-statured BSC functional groups that may be important in controlling wind and water erosion (squamulose lichens, vagrant lichens, and tall turf mosses) exhibited a significant decrease in abundance in burned areas relative to adjacent unburned areas. The decreases in BSC cover and richness along with decreased abundance of several functional groups suggest that wildfire can negatively impact ecosystem function in these semiarid ecosystems for at least 1 to 2 decades. This is a concern given that increased fire frequency is predicted for the region due to exotic grass invasion and climate change.


Oecologia ◽  
2013 ◽  
Vol 173 (2) ◽  
pp. 557-568 ◽  
Author(s):  
T. J. Mason ◽  
K. French ◽  
D. Jolley

2021 ◽  
Vol 14 (4) ◽  
pp. 679-691
Author(s):  
Zijing Li ◽  
Maowei Liang ◽  
Zhiyong Li ◽  
Pierre Mariotte ◽  
Xuze Tong ◽  
...  

Abstract Aims Functional group composition of a plant community is mainly driven by environmental factors and is one of the main determinants of grassland biodiversity and productivity. Therefore, it is important to understand the role of plant functional groups (PFGs) in mediating the impact of environmental conditions on ecosystem functions and biodiversity. Methods We measured plant biomass and species richness (SR) of grasslands in 65 sites on the Mongolian Plateau and classified 157 perennial herbaceous plants into two main PFGs (namely grasses and forbs). Using the random forest model and ordinary least squares regression, we identified that environmental factors (i.e. aridity index, soil total nitrogen [STN] and pH) were significantly related to the SR and aboveground biomass (AGB) of PFGs. We then used structural equation modeling to explore the relationship between the identified environmental factors and community SR and biomass, and the role of PFGs in driving this relationship. Important Findings We found that aridity index had unimodal relationships with both AGB and SR of the PFGs and the whole community. All SR and biomass metrics were significantly related to STN and pH. The relationship between aridity index and community biomass was mediated by an increase in the AGB of grasses. The influence of STN and pH on community SR was mainly due to their regulation in the SR of forbs. Our results indicate that community composition and the identity of the PFGs play a key role in linking environmental factors to ecosystem functioning.


2021 ◽  
Vol 9 ◽  
Author(s):  
David Giralt ◽  
Javiera Pantoja ◽  
Manuel B. Morales ◽  
Juan Traba ◽  
Gerard Bota

Landscape modification and habitat fragmentation are one of the major current threats to biodiversity. The main source of habitat fragmentation is the loss of focal habitat area, but changes in the composition of the surrounding landscape also have a direct effect on biodiversity. These changes may lead to the loss of some species but also may favor species replacement. Farmland birds in Europe are affected by landscape changes due to farmland intensification, such as the spread of irrigation, which may occur at different spatial scales. As irrigation is expected to increase in the coming years, which may affect protected areas, it is necessary to evaluate its potential consequences over focal biodiversity. In this study we assess the relationship between the increase of irrigated land at different spatial scales and changes in a dry cereal farmland bird community, bird abundance and species richness, using generalized linear models. We used a dry cereal farmland affinity index to describe the level of community specificity for dry cereal farmland. The increase in irrigated tree orchards produced an increase in species richness up to 500 m away from the irrigated area, which had a negative effect on the dry cereal farmland bird community, by triggering a replacement of specialist by generalist species. Our results show the importance of landscape-scale effects of irrigation occurring outside protected areas on the farmland bird community inside Natura 2000 sites, as well as how these effects are detected even at long distances from the disturbance source.


Sign in / Sign up

Export Citation Format

Share Document