soil heating
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Berin D. E. Mackenzie ◽  
Tony D. Auld ◽  
David A. Keith ◽  
Mark K. J. Ooi

Fire seasonality (the time of year of fire occurrence) has important implications for a wide range of demographic processes in plants, including seedling recruitment. However, the underlying mechanisms of fire-driven recruitment of species with physiological seed dormancy remain poorly understood, limiting effective fire and conservation management, with insights hampered by common methodological practices and complex dormancy and germination requirements. We sought to identify the mechanisms that regulate germination of physiologically dormant species in nature and assess their sensitivity to changes in fire seasonality. We employed a combination of laboratory-based germination trials and burial-retrieval trials in natural populations of seven species of Boronia (Rutaceae) to characterize seasonal patterns in dormancy and fire-stimulated germination over a 2-year period and synthesized the observed patterns into a conceptual model of fire seasonality effects on germination. The timing and magnitude of seedling emergence was mediated by seasonal dormancy cycling and seasonal temperature cues, and their interactions with fire seasonality, the degree of soil heating expected during a fire, and the duration of imbibition. Primary dormancy was overcome within 4–10 months’ burial and cycled seasonally. Fire-associated heat and smoke stimulated germination once dormancy was alleviated, with both cues required in combination by some species. For some species, germination was restricted to summer temperatures (a strict seasonal requirement), while others germinated over a broader seasonal range of temperatures but exhibited seasonal preferences through greater responses at warmer or cooler temperatures. The impacts of fires in different seasons on germination can vary in strength and direction, even between sympatric congeners, and are strongly influenced by moisture availability (both the timing of post-fire rainfall and the duration soils stay moist enough for germination). Thus, fire seasonality and fire severity (via its effect on soil heating) are expected to significantly influence post-fire emergence patterns in these species and others with physiological dormancy, often leading to “germination interval squeeze.” Integration of these concepts into current fire management frameworks is urgently required to ensure best-practice conservation. This is especially pertinent given major, ongoing shifts in fire seasonality and rainfall patterns across the globe due to climate change and increasing anthropogenic ignitions.


2021 ◽  
Vol 52 (3) ◽  
Author(s):  
Evelia Schettini ◽  
Giovanni Puglisi ◽  
Fabiana Convertino ◽  
Fernando Antonio Cancellara ◽  
Giuliano Vox

Energy consumption in greenhouse heating could reach up to 90% of the total energy requirement depending on the type of greenhouse, environmental control equipment and location of the greenhouse. The use of climate conditioning technologies that exploit renewable energy and the application of passive systems to improve the energy efficiency and the sustainability of the greenhouse sector are recommended. During winter 2020-2021, an experimental test was carried out at the University of Bari in a Mediterranean greenhouse heated by a polygeneration system, composed of a solar system and an air-water heat pump. Three localized heating systems were tested to transfer thermal energy close to plants of Roman lettuce. Heating pipes were placed inside the cultivation substrate in the underground pipe system and on the cultivation substrate in the laid pipe system. The third system consists of metal plates heated by steel tubes and placed in the aerial area of plants. A weather climatic station and a sensor system interfaced with a data logger for continuous data acquisition and storage were used. The plate system was the best for air temperature rising, as it allowed an increase of 3.6% compared to the set-up without any localised heating system. The underground pipe system was the best for the soil heating, as it achieved a temperature increase of 92%. Localized soil heating systems contributed significantly to an earlier harvest by almost 2 weeks.


Author(s):  
Alba Lombao ◽  
Ana Barreiro ◽  
María Teresa Fontúrbel ◽  
Angela Martín ◽  
Tarsy Carballas ◽  
...  

2021 ◽  
Vol 280 ◽  
pp. 10006
Author(s):  
Oleg Pinchuk ◽  
Serhii Klimov ◽  
Ivan Romaniuk ◽  
Florin Faur ◽  
Maria Lazăr ◽  
...  

The use of surface heating with heat exchangers significantly affects the temperature regime of the soil and the surface air layer. It is manifested in a change in the distribution of temperatures according to the soil horizon, in a considerable increase in the temperature of the soil and air, in a change of heat exchange between the soil and the surface layer of air. When using tunnel greenhouse, heating the soil with the coolant temperature of 25…30 ºC contributes to the creation of all necessary conditions in ground area equipped with a heat exchangers for shifting the vegetation period of ultra-early cultivation of agricultural crops, on average, by 1-2 months depending on the crop type. This allows for earlier sowing and planting of thermophilic crops and getting harvest earlier than usual, as well as increasing the amount of crop production and improving its quality. The thermal efficiency of soil heating with water-filled flexible sleeves was studied experimentally in a field model experiment performed in the climatic terms of the Ukrainian Polissya on sandy loam and chernozem soils. Strawberry of the “Festivalny” type was used as the main crop-indicator. The influence of soil heating with heat exchangers on the growth, development and yield of strawberries has been studied.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 355
Author(s):  
Ana Barreiro ◽  
Alba Lombao ◽  
Angela Martín ◽  
Javier Cancelo-González ◽  
Tarsy Carballas ◽  
...  

Soil properties determining the thermal transmissivity, the heat duration and temperatures reached during soil heating are key factors driving the fire-induced changes in soil microbial communities. The aim of the present study is to analyze, under laboratory conditions, the impact of the thermal shock (infrared lamps reaching temperatures of 100 °C, 200 °C and 400 °C) and moisture level (0%, 25% and 50% per soil volume) on the microbial properties of three soil mixtures from different sites. The results demonstrated that the initial water content was a determinant factor in the response of the microbial communities to soil heating treatments. Measures of fire impact included intensity and severity (temperature, duration), using the degree-hours method. Heating temperatures produced varying thermal shock and impacts on biomass, bacterial activity and microbial community structure.


2020 ◽  
Vol 34 (9) ◽  
pp. 1967-1978 ◽  
Author(s):  
Ryan Tangney ◽  
David J. Merritt ◽  
J. Nikolaus Callow ◽  
Joseph B. Fontaine ◽  
Ben P. Miller

Sign in / Sign up

Export Citation Format

Share Document