scholarly journals Supplementary material to "A mechanistic model of an upper bound on oceanic carbon export as a function of mixed layer depth and temperature"

Author(s):  
Zuchuan Li ◽  
Nicolas Cassar
2017 ◽  
Vol 14 (22) ◽  
pp. 5015-5027 ◽  
Author(s):  
Zuchuan Li ◽  
Nicolas Cassar

Abstract. Export production reflects the amount of organic matter transferred from the ocean surface to depth through biological processes. This export is in large part controlled by nutrient and light availability, which are conditioned by mixed layer depth (MLD). In this study, building on Sverdrup's critical depth hypothesis, we derive a mechanistic model of an upper bound on carbon export based on the metabolic balance between photosynthesis and respiration as a function of MLD and temperature. We find that the upper bound is a positively skewed bell-shaped function of MLD. Specifically, the upper bound increases with deepening mixed layers down to a critical depth, beyond which a long tail of decreasing carbon export is associated with increasing heterotrophic activity and decreasing light availability. We also show that in cold regions the upper bound on carbon export decreases with increasing temperature when mixed layers are deep, but increases with temperature when mixed layers are shallow. A meta-analysis shows that our model envelopes field estimates of carbon export from the mixed layer. When compared to satellite export production estimates, our model indicates that export production in some regions of the Southern Ocean, particularly the subantarctic zone, is likely limited by light for a significant portion of the growing season.


2017 ◽  
Author(s):  
Zuchuan Li ◽  
Nicolas Cassar

Abstract. Export production reflects the amount of organic matter transferred from the surface ocean to depth through biological processes. This export is in great part controlled by nutrient and light availability, which are conditioned by mixed layer depth (MLD). In this study, building on Sverdrup’s critical depth hypothesis, we derive a mechanistic model of an upper bound on carbon export based on the metabolic balance between photosynthesis and respiration as a function of MLD and temperature. We find that the upper bound is a positively skewed bell-shaped function of MLD. Specifically, the upper bound increases with deepening mixed layers down to a critical depth, beyond which a long tail of decreasing carbon export is associated with increasing heterotrophic activity and decreasing light availability. We also show that in cold regions the upper bound on carbon export decreases with increasing temperature when mixed layers are deep, but increases with temperature when mixed layers are shallow. A metaanalysis shows that our model envelopes field estimates of carbon export from the mixed layer. When compared to satellite export production estimates, our model indicates that export production in some regions of the Southern Ocean, most particularly the Subantarctic Zone, is likely limited by light for a significant portion of the growing season.


2018 ◽  
Author(s):  
Christian Stranne ◽  
Larry Mayer ◽  
Martin Jakobsson ◽  
Elizabeth Weidner ◽  
Kevin Jerram ◽  
...  

2018 ◽  
Author(s):  
Cheriyeri P. Abdulla ◽  
Mohammed A. Alsaafani ◽  
Turki M. Alraddadi ◽  
Alaa M. Albarakati

2012 ◽  
Vol 40 (3-4) ◽  
pp. 743-759 ◽  
Author(s):  
M. G. Keerthi ◽  
M. Lengaigne ◽  
J. Vialard ◽  
C. de Boyer Montégut ◽  
P. M. Muraleedharan

Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. 592-598
Author(s):  
Jean-Baptiste Sallée ◽  
Violaine Pellichero ◽  
Camille Akhoudas ◽  
Etienne Pauthenet ◽  
Lucie Vignes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document