Response of the mixed layer depth and subduction rate in the subtropical Northeast Pacific to global warming

Author(s):  
Ruibin Xia ◽  
Bingrui Li ◽  
Cheng Chen
2016 ◽  
Vol 33 (4) ◽  
pp. 452-461
Author(s):  
Ruosi Zhang ◽  
Shang-Ping Xie ◽  
Lixiao Xu ◽  
Qinyu Liu

2009 ◽  
Vol 39 (6) ◽  
pp. 1399-1415 ◽  
Author(s):  
Richard E. Thomson ◽  
Isaac V. Fine

Abstract This paper presents a simple diagnostic model for estimating mixed layer depth based solely on the one-dimensional heat balance equation, the surface heat flux, and the sea surface temperature. The surface fluxes drive heating or cooling of the upper layer whereas the surface temperature acts as a “thermostat” that regulates the vertical extent of the layer. Daily mixed layer depth estimates from the diagnostic model (and two standard bulk mixed layer models) are compared with depths obtained from oceanic profiles collected during the 1956–80 Canadian Weathership program at Station P and more recent (2001–07) profiles from the vicinity of this station from Argo drifters. Summer mixed layer depths from the diagnostic model agree more closely with observed depths and are less sensitive to heat flux errors than those from bulk models. For the Weathership monitoring period, the root-mean-square difference between modeled and observed monthly mean mixed layer depths is ∼6 m for the diagnostic model and ∼10 m for the bulk models. The diagnostic model is simpler to apply than bulk models and sidesteps the need for wind data and turbulence parameterization required by these models. Mixed layer depths obtained from the diagnostic model using NCEP–NCAR reanalysis data reveal that—contrary to reports for late winter—there has been no significant trend in the summer mixed layer depth in the central northeast Pacific over the past 52 yr.


Author(s):  
Jorge Vazquez ◽  
Jose Gomez-Valdes

Data from NASA’s Soil Moisture Active Passive Mission (SMAP) and from the California Cooperative Oceanic Fisheries Investigations (CalCOFI) were used to examine the freshening that occurred during 2015-2016 in the Southern California Current System. Overall the freshening was found to be related to the 2014-2016 Northeast Pacific Warm Anomaly. The primary goal was to determine the feasibility of using SMAP data to observe the surface salinity signal associated with the warming. As a first step direct comparisons were done with salinity from the CalCOFI data at one-meter depth. During 2015 SMAP was saltier than CalCOFI by 0.5 PSU, but biases were reduced to < 0.1 PSU during 2016. South of 33°N, and within 100 km of the coast, SMAP was fresher in 2015 by almost 0.2 PSU. CalCOFI showed freshening of 0.1 PSU. North of 33°N SMAP and CalCOFI saw significant freshening in 2016, SMAP by 0.4 PSU and CalCOFI by 0.2 PSU. Differences between SMAP and CalCOFI are consistent with the increased stratification in 2015 and changes in the mixed layer depth.


2018 ◽  
Vol 37 (3) ◽  
pp. 51-62
Author(s):  
Ruibin Xia ◽  
Chengyan Liu ◽  
Chen Cheng

2011 ◽  
Vol 68 (6) ◽  
pp. 996-1007 ◽  
Author(s):  
Chan Joo Jang ◽  
Jisoo Park ◽  
Taewook Park ◽  
Sinjae Yoo

Abstract Jang, C. J., Park, J., Park, T., and Yoo, S. 2011. Response of the ocean mixed layer depth to global warming and its impact on primary production: a case for the North Pacific Ocean. – ICES Journal of Marine Science, 68: 996–1007. This study investigates changes in the mixed layer depth (MLD) in the North Pacific Ocean in response to global warming and their impact on primary production by comparing outputs from 11 models of the coupled model intercomparison projects phase 3. The MLD in the 21st century decreases in most regions of the North Pacific, whereas the spatial pattern of the MLD is nearly unchanged. The overall shoaling results in part from intensified upper-ocean stratification caused by both surface warming and freshening. A significant MLD decrease (>30 m) is found in the Kuroshio extension (KE), which is predominantly driven by reduced surface cooling, caused by weakening of wind. Associated with the mixed layer shoaling in the KE, the primary production component resulting from seasonal vertical mixing will be reduced by 10.7–40.3% (ranges of medians from 11 models) via decreased nitrate fluxes from below it. Spring blooms in most models are projected to initiate earlier in the KE by 0–13 d (ranges of medians from 11 models). Despite the overall trends, the magnitude of changes in primary production and timing of spring blooms are quite different depending on models and latitudes.


Author(s):  
Michael Alexander ◽  
Antonietta Capotondi ◽  
Arthur Miller ◽  
Fei Chai ◽  
Richard Brodeur ◽  
...  

2012 ◽  
Vol 40 (3-4) ◽  
pp. 743-759 ◽  
Author(s):  
M. G. Keerthi ◽  
M. Lengaigne ◽  
J. Vialard ◽  
C. de Boyer Montégut ◽  
P. M. Muraleedharan

Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. 592-598
Author(s):  
Jean-Baptiste Sallée ◽  
Violaine Pellichero ◽  
Camille Akhoudas ◽  
Etienne Pauthenet ◽  
Lucie Vignes ◽  
...  

2021 ◽  
Author(s):  
Sumit Dandapat ◽  
Arun Chakraborty ◽  
Jayanarayanan Kuttippurath ◽  
Chirantan Bhagawati ◽  
Radharani Sen

Sign in / Sign up

Export Citation Format

Share Document