Response to the interactive comment of anonymous Referee #2 on “Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean” by Christian Schlosser et al.

2018 ◽  
Author(s):  
Christian Schlosser
2018 ◽  
Vol 15 (16) ◽  
pp. 4973-4993 ◽  
Author(s):  
Christian Schlosser ◽  
Katrin Schmidt ◽  
Alfred Aquilina ◽  
William B. Homoky ◽  
Maxi Castrillejo ◽  
...  

Abstract. The island of South Georgia is situated in the iron (Fe)-depleted Antarctic Circumpolar Current of the Southern Ocean. Iron emanating from its shelf system fuels large phytoplankton blooms downstream of the island, but the actual supply mechanisms are unclear. To address this, we present an inventory of Fe, manganese (Mn), and aluminium (Al) in shelf sediments, pore waters, and the water column in the vicinity of South Georgia, alongside data on zooplankton-mediated Fe cycling processes, and provide estimates of the relative dissolved Fe (DFe) fluxes from these sources. Seafloor sediments, modified by authigenic Fe precipitation, were the main particulate Fe source to shelf bottom waters as indicated by the similar Fe ∕ Mn and Fe ∕ Al ratios for shelf sediments and suspended particles in the water column. Less than 1 % of the total particulate Fe pool was leachable surface-adsorbed (labile) Fe and therefore potentially available to organisms. Pore waters formed the primary DFe source to shelf bottom waters, supplying 0.1–44 µmol DFe m−2 d−1. However, we estimate that only 0.41±0.26 µmol DFe m−2 d−1 was transferred to the surface mixed layer by vertical diffusive and advective mixing. Other trace metal sources to surface waters included glacial flour released by melting glaciers and via zooplankton egestion and excretion processes. On average 6.5±8.2 µmol m−2 d−1 of labile particulate Fe was supplied to the surface mixed layer via faecal pellets formed by Antarctic krill (Euphausia superba), with a further 1.1±2.2 µmol DFe m−2 d−1 released directly by the krill. The faecal pellets released by krill included seafloor-derived lithogenic and authigenic material and settled algal debris, in addition to freshly ingested suspended phytoplankton cells. The Fe requirement of the phytoplankton blooms ∼ 1250 km downstream of South Georgia was estimated as 0.33±0.11 µmol m−2 d−1, with the DFe supply by horizontal/vertical mixing, deep winter mixing, and aeolian dust estimated as ∼0.12 µmol m−2 d−1. We hypothesize that a substantial contribution of DFe was provided through recycling of biogenically stored Fe following luxury Fe uptake by phytoplankton on the Fe-rich shelf. This process would allow Fe to be retained in the surface mixed layer of waters downstream of South Georgia through continuous recycling and biological uptake, supplying the large downstream phytoplankton blooms.


2013 ◽  
Vol 10 (1) ◽  
pp. 217-231 ◽  
Author(s):  
I. Borrione ◽  
R. Schlitzer

Abstract. South Georgia phytoplankton blooms are amongst the largest of the Southern Ocean and are associated with a rich ecosystem and strong atmospheric carbon drawdown. Both aspects depend on the intensity of blooms, but also on their regularity. Here we use data from 12 yr of SeaWiFS (Sea-viewing Wide Field-of-view Sensor) ocean colour imagery and calculate the frequency of bloom occurrence (FBO) to re-examine spatial and temporal bloom distributions. We find that upstream of the island and outside the borders of the Georgia Basin, blooms occurred in less than 4 out of the 12 yr (FBO < 4). In contrast, FBO was mostly greater than 8 downstream of the island, i.e., to the north and northwest, and in places equal to 12, indicating that blooms occurred every year. The typical bloom area, defined as the region where blooms occurred in at least 8 out of the 12 yr, covers the entire Georgia Basin and the northern shelf of the island. The time series of surface chlorophyll a (Chl a) concentrations averaged over the typical bloom area shows that phytoplankton blooms occurred in every year between September 1997 and September 2010, and that Chl a values followed a clear seasonal cycle, with concentration peaks around December followed in many years by a second peak during late austral summer or early autumn, suggesting a bi-modal bloom pattern. The bloom regularity we describe here is in contrast with results of Park et al. (2010) who used a significantly different study area including regions that almost never exhibit bloom conditions.


2012 ◽  
Vol 9 (8) ◽  
pp. 10087-10120 ◽  
Author(s):  
I. Borrione ◽  
R. Schlitzer

Abstract. South Georgia phytoplankton blooms are amongst the largest of the Southern Ocean and are associated with a rich ecosystem and strong atmospheric carbon drawdown. Both aspects depend on the intensity of blooms, but also on their regularity. Here we use data from 12 yr of SeaWiFS ocean colour imagery and calculate the frequency of bloom occurrence (FBO) to re-examine spatial and temporal bloom distributions. We find that upstream of the island and outside the borders of the Georgia Basin, blooms occurred in less than 4 out of the 12 yr (FBO < 4). In contrast, FBO was mostly greater than 8 downstream of the island, i.e. to the north and northwest, and in places equal to 12, indicating that blooms occurred every year. The typical bloom area, defined as the region where blooms occurred in at least 8 out of the 12 yr, covers the entire Georgia Basin and the northern shelf of the island. The time series of surface chlorophyll-a (chl-a) concentrations averaged over the typical bloom area shows that phytoplankton blooms occurred in every year between September 1997 and September 2010, and that chl-a values followed a clear seasonal cycle, with concentration peaks around December followed in many years by a second peak during late austral summer or early autumn, suggesting a bi-modal bloom pattern. The bloom regularity we describe here is in contrast with results of Park et al. (2010) who used a significantly different study area including regions that almost never exhibit bloom conditions.


2015 ◽  
Vol 12 (14) ◽  
pp. 4421-4445 ◽  
Author(s):  
A. R. Bowie ◽  
P. van der Merwe ◽  
F. Quéroué ◽  
T. Trull ◽  
M. Fourquez ◽  
...  

Abstract. Iron availability in the Southern Ocean controls phytoplankton growth, community composition and the uptake of atmospheric CO2 by the biological pump. The KEOPS-2 (KErguelen Ocean and Plateau compared Study 2) "process study", took place around the Kerguelen Plateau in the Indian sector of the Southern Ocean. This is a region naturally fertilised with iron on the scale of hundreds to thousands of square kilometres, producing a mosaic of spring blooms which show distinct biological and biogeochemical responses to fertilisation. This paper presents biogeochemical iron budgets (incorporating vertical and lateral supply, internal cycling, and sinks) for three contrasting sites: an upstream high-nutrient low-chlorophyll reference, over the plateau and in the offshore plume east of the Kerguelen Islands. These budgets show that distinct regional environments driven by complex circulation and transport pathways are responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. Iron supply from "new" sources (diffusion, upwelling, entrainment, lateral advection, atmospheric dust) to the surface waters of the plume was double that above the plateau and 20 times greater than at the reference site, whilst iron demand (measured by cellular uptake) in the plume was similar to that above the plateau but 40 times greater than at the reference site. "Recycled" iron supply by bacterial regeneration and zooplankton grazing was a relatively minor component at all sites (< 8 % of new supply), in contrast to earlier findings from other biogeochemical iron budgets in the Southern Ocean. Over the plateau, a particulate iron dissolution term of 2.5 % was invoked to balance the budget; this approximately doubled the standing stock of dissolved iron in the mixed layer. The exchange of iron between dissolved, biogenic particulate and lithogenic particulate pools was highly dynamic in time and space, resulting in a decoupling of the iron supply and carbon export and, importantly, controlling the efficiency of fertilisation.


2017 ◽  
Author(s):  
Christian Schlosser ◽  
Katrin Schmidt ◽  
Alfred Aquilina ◽  
William B. Homoky ◽  
Maxi Castrillejo ◽  
...  

Abstract. The island of South Georgia is situated in the iron (Fe) depleted Antarctic Circumpolar Current of the Southern Ocean. Iron emanating from its shelf system fuels large phytoplankton blooms downstream of the island, but the actual supply mechanisms are unclear. To address this we present the first inventory of Fe, manganese (Mn) and aluminium (Al) in shelf sediments, pore waters and the water column in the vicinity of South Georgia, alongside data on zooplankton-mediated Fe cycling processes. The seafloor sediments were the main particulate Fe source to shelf bottom waters as indicated by Fe / Mn and Fe / Al ratios for shelf sediments and suspended particles in the water column. Less than 1 % of the total particulate Fe pool was leachable surface adsorbed (labile) Fe, and therefore potentially available to organisms. Pore waters formed the primary dissolved Fe (DFe) source to shelf bottom waters supplying 0.1–4 μmol DFe m−2 d−1. However, only 0.41 ± 0.26 μmol DFe m−2 d−1 was transferred to the surface mixed layer by vertical diffusive and advective mixing. Other trace metal sources to surface waters included glacial flour released by melting glaciers and zooplankton excretion processes. On average 6.5 ± 8.2 μmol m−2 d−1 of labile particulate Fe was supplied to the surface mixed layer via krill faecal pellets, with further DFe released by krill at around 1.1 ± 2.2 μmol m−2 d−1. The faecal pellets released by krill constituted of seafloor derived lithogenic material and settled algae debris, in addition to freshly ingested suspended phytoplankton specimen. The phytoplankton Fe requirement in the blooms ca. 1250 km downstream the island of South Georgia was 0.33 ± 0.11 μmol m−2 d−1, with the DFe supply by horizontal/vertical mixing, deep winter mixing and via aeolian dust estimated as ~ 0.12 μmol m−2 d−1. We suggest that additionally required DFe was provided through recycling of biogenically stored Fe following luxury Fe uptake by phytoplankton on the Fe rich shelf. This process would allow Fe to be retained in the surface mixed layer of waters downstream of South Georgia through continuous recycling and biological uptake, and facilitate the large scale blooms.


2014 ◽  
Vol 11 (12) ◽  
pp. 17861-17923 ◽  
Author(s):  
A. R. Bowie ◽  
P. van der Merwe ◽  
F. Quéroué ◽  
T. Trull ◽  
M. Fourquez ◽  
...  

Abstract. Iron availability in the Southern Ocean controls phytoplankton growth, community composition and the uptake of atmospheric CO2 by the biological pump. The KEOPS-2 experiment took place around the Kerguelen plateau in the Indian sector of the Southern Ocean, a region naturally fertilised with iron at the scale of hundreds to thousands of square kilometres, producing a mosaic of spring blooms which showed distinct biological and biogeochemical responses to fertilisation. This paper presents biogeochemical iron budgets (incorporating vertical and lateral supply, internal cycling, and sinks) for three contrasting sites: an upstream high-nutrient low-chlorophyll reference, over the plateau, and in the offshore plume east of Kerguelen Island. These budgets show that distinct regional environments driven by complex circulation and transport pathways are responsible for differences in the mode and strength of iron supply, with vertical supply dominant on the plateau and lateral supply dominant in the plume. Iron supply from "new" sources to surface waters of the plume was double that above the plateau and 20 times greater than at the reference site, whilst iron demand (measured by cellular uptake) in the plume was similar to the plateau but 40 times greater than the reference. "Recycled" iron supply by bacterial regeneration and zooplankton grazing was a relative minor component at all sites (<8% of "new" supply), in contrast to earlier findings from other biogeochemical iron budgets in the Southern Ocean. Over the plateau, a particulate iron dissolution term of 2.5% was invoked to balance the budget; this approximately doubled the standing stock of dissolved iron in the mixed layer. The exchange of iron between dissolved, biogenic and lithogenic particulate pools was highly dynamic in time and space, resulting in a decoupling of iron supply and carbon export and, importantly, controlling the efficiency of fertilisation.


Formidable legal and administrative complexities arise from conflicting claims to jurisdiction and the continued absence of generally recognized sovereignty over much of the region. Existing conservation measures fall into three groups: elaborate laws made by governments claiming Antarctic territories, more restricted laws, and simple instructions for particular expeditions. The Antarctic Treaty, 1959, made it possible to begin coordinating all these separate instruments. No claimed jurisdiction has been surrendered or recognized: each government has started to harmonize its own control measures with the ‘Agreed Measures for the Conservation of Antarctic Fauna and Flora’, 1964. This scheme applied only to land areas and has since been evolving in the light of experience. Although not yet formally approved by all the governments concerned, it is working effectively by voluntary agreement. Different approaches are necessary for conservation of Southern Ocean resources, especially krill. A start has been made with the ‘ Convention for the Conservation of Antarctic Seals’, 1972. There are many outstanding problems: all require effective cooperation between scientific and legal advisers, diplomats and politicians. Mention is made of recent British conservation legislation for South Georgia, the Falkland Islands and the Tristan da Cunha group. Some of the next steps are outlined.


Sign in / Sign up

Export Citation Format

Share Document