scholarly journals The impact of spatiotemporal variability in atmospheric CO<sub>2</sub> concentration on global terrestrial carbon fluxes

Author(s):  
Eunjee Lee ◽  
Fan-Wei Zeng ◽  
Randal D. Koster ◽  
Brad Weir ◽  
Lesley E. Ott ◽  
...  

Abstract. Land carbon fluxes, e.g., gross primary production (GPP) and net biome production (NBP), are controlled in part by the responses of terrestrial ecosystems to atmospheric conditions near the Earth's surface. The Coupled Model Intercomparison Project Phase 6 (CMIP6) has recently proposed increased spatial and temporal resolutions for the surface CO2 concentrations used to calculate GPP, and yet a comprehensive evaluation of the consequences of this increased resolution for carbon cycle dynamics is missing. Here, using global offline simulations with a terrestrial biosphere model, the sensitivity of terrestrial carbon cycle fluxes to multiple facets of the spatiotemporal variability of atmospheric CO2 is quantified. Globally, the spatial variability of CO2 is found to increase the mean global GPP by 0.2 PgC year−1, as more vegetated land areas benefit from higher CO2 concentrations induced by the inter-hemisphere gradient. The temporal variability of CO2, however, compensates for this increase, acting to reduce overall global GPP; in particular, consideration of the diurnal variability of atmospheric CO2 reduces multi-year mean global annual GPP by 0.5 PgC year−1 and net land carbon uptake by 0.1 PgC year−1. The relative contribution of the different facets of CO2 variability to GPP are found to vary regionally and seasonally, with the seasonal variation in atmospheric CO2, for example, having a notable impact on GPP in boreal regions during fall. Overall, in terms of estimating global GPP, the magnitudes of the sensitivities found here are minor, indicating that the common practice of applying spatially-uniform and annually increasing CO2 (without higher frequency temporal variability) in offline studies is a reasonable approach – the small errors induced by ignoring CO2 variability are undoubtedly swamped by other uncertainties in the offline calculations. Still, for certain regional- and seasonal-scale GPP estimations, the proper treatment of spatiotemporal CO2 variability appears important.

2018 ◽  
Vol 15 (18) ◽  
pp. 5635-5652 ◽  
Author(s):  
Eunjee Lee ◽  
Fan-Wei Zeng ◽  
Randal D. Koster ◽  
Brad Weir ◽  
Lesley E. Ott ◽  
...  

Abstract. Land carbon fluxes, e.g., gross primary production (GPP) and net biome production (NBP), are controlled in part by the responses of terrestrial ecosystems to atmospheric conditions near the Earth's surface. The Coupled Model Intercomparison Project Phase 6 (CMIP6) has recently proposed increased spatial and temporal resolutions for the surface CO2 concentrations used to calculate GPP, and yet a comprehensive evaluation of the consequences of this increased resolution for carbon cycle dynamics is missing. Here, using global offline simulations with a terrestrial biosphere model, the sensitivity of terrestrial carbon cycle fluxes to multiple facets of the spatiotemporal variability in atmospheric CO2 is quantified. Globally, the spatial variability in CO2 is found to increase the mean global GPP by a maximum of 0.05 Pg C year−1, as more vegetated land areas benefit from higher CO2 concentrations induced by the inter-hemispheric gradient. The temporal variability in CO2, however, compensates for this increase, acting to reduce overall global GPP; in particular, consideration of the diurnal variability in atmospheric CO2 reduces multi-year mean global annual GPP by 0.5 Pg C year−1 and net land carbon uptake by 0.1 Pg C year−1. The relative contributions of the different facets of CO2 variability to GPP are found to vary regionally and seasonally, with the seasonal variation in atmospheric CO2, for example, having a notable impact on GPP in boreal regions during fall. Overall, in terms of estimating global GPP, the magnitudes of the sensitivities found here are minor, indicating that the common practice of applying spatially uniform and annually increasing CO2 (without higher-frequency temporal variability) in offline studies is a reasonable approach – the small errors induced by ignoring CO2 variability are undoubtedly swamped by other uncertainties in the offline calculations. Still, for certain regional- and seasonal-scale GPP estimations, the proper treatment of spatiotemporal CO2 variability appears important.


2021 ◽  
Author(s):  
Rémy Asselot ◽  
Frank Lunkeit ◽  
Philip Holden ◽  
Inga Hense

Abstract. Marine biota and biogeophysical mechanisms, such as phytoplankton light absorption, have attracted increasing attention in recent climate studies. Under global warming, the impact of phytoplankton on the climate system is expected to change. Previous studies analyzed the impact of phytoplankton light absorption under prescribed future atmospheric CO2 concentrations. However, the role of this biogeophysical mechanism under freely-evolving atmospheric CO2 concentration and future CO2 emissions remain unknown. To shed light on this research gap, we perform simulations with the EcoGEnIE Earth system model and prescribe CO2 emissions following the four Representative Concentration Pathways (RCP) scenarios. Under all the RCP scenario, our results indicate that phytopankton light absorption increases the surface chlorophyll biomass, the sea surface temperature, the atmospheric CO2 concentrations and the atmospheric temperature. Under the RCP2.6, RCP4.5 and RCP6.0 scenarios, the magnitude of changes due to phytoplankton light absorption are similar. However, under the RCP8.5 scenario, the changes in the climate system are less pronounced due to the temperature limitation of phytoplankton growth, highlighting the reduced effect of phytoplankton light absorption under strong warming. Additionally, this work evidences the major role of phytoplankton light absorption on the climate system, suggesting a highly uncertain feedbacks on the carbon cycle with uncertainties that are in the range of those known from the land biota.


2018 ◽  
Vol 14 (2) ◽  
pp. 239-253 ◽  
Author(s):  
Nathaelle Bouttes ◽  
Didier Swingedouw ◽  
Didier M. Roche ◽  
Maria F. Sanchez-Goni ◽  
Xavier Crosta

Abstract. Atmospheric CO2 levels during interglacials prior to the Mid-Brunhes Event (MBE, ∼ 430 ka BP) were around 40 ppm lower than after the MBE. The reasons for this difference remain unclear. A recent hypothesis proposed that changes in oceanic circulation, in response to different external forcings before and after the MBE, might have increased the ocean carbon storage in pre-MBE interglacials, thus lowering atmospheric CO2. Nevertheless, no quantitative estimate of this hypothesis has been produced up to now. Here we use an intermediate complexity model including the carbon cycle to evaluate the response of the carbon reservoirs in the atmosphere, ocean and land in response to the changes of orbital forcings, ice sheet configurations and atmospheric CO2 concentrations over the last nine interglacials. We show that the ocean takes up more carbon during pre-MBE interglacials in agreement with data, but the impact on atmospheric CO2 is limited to a few parts per million. Terrestrial biosphere is simulated to be less developed in pre-MBE interglacials, which reduces the storage of carbon on land and increases atmospheric CO2. Accounting for different simulated ice sheet extents modifies the vegetation cover and temperature, and thus the carbon reservoir distribution. Overall, atmospheric CO2 levels are lower during these pre-MBE simulated interglacials including all these effects, but the magnitude is still far too small. These results suggest a possible misrepresentation of some key processes in the model, such as the magnitude of ocean circulation changes, or the lack of crucial mechanisms or internal feedbacks, such as those related to permafrost, to fully account for the lower atmospheric CO2 concentrations during pre-MBE interglacials.


2016 ◽  
Author(s):  
Nathaelle Bouttes ◽  
Didier Swingedouw ◽  
Didier Roche ◽  
Maria Sanchez-Goni ◽  
Xavier Crosta

Abstract. Atmospheric CO2 levels during interglacials prior to the Mid Bruhnes Event (MBE, ~ 430 ka BP) have lower values of around 40 ppm than after the MBE. The reasons for this difference remain unclear. A recent hypothesis proposed that changes in oceanic circulation, in response to differences in external forcing before and after the MBE, might have increased the ocean carbon storage and thus explained the lower CO2. Nevertheless, no quantitative estimate of this hypothesis has been produced up to now. Here we use an intermediate complexity model including the carbon cycle to evaluate the response of the carbon reservoirs in the atmosphere, ocean and land in response to the changes of orbital forcings and atmospheric CO2 concentrations over the nine last interglacials. We show that the ocean takes up more carbon during pre-MBE interglacials in agreement with data, but the impact on atmospheric CO2 is limited to a few ppm. Terrestrial biosphere is simulated to be less developed in pre-MBE interglacials, which reduces the storage of carbon on land and increases atmospheric CO2. Accounting for different simulated ice sheet extents modifies the vegetation cover and temperature, and thus the carbon reservoir distribution. Overall, atmospheric CO2 is slightly smaller in these pre-MBE simulated interglacials including ice sheet variations, but the magnitude is still far too small. These results suggest a possible mis-representation of some key processes in the model, such as the magnitude of ocean circulation changes, or the lack of crucial mechanisms or internal feedbacks, such as those related to permafrost, that could explain the lower atmospheric CO2 concentrations during pre-MBE interglacials.


2021 ◽  
Vol 15 (3) ◽  
pp. 1627-1644
Author(s):  
Andrea J. Pain ◽  
Jonathan B. Martin ◽  
Ellen E. Martin ◽  
Åsa K. Rennermalm ◽  
Shaily Rahman

Abstract. Accelerated melting of the Greenland Ice Sheet has increased freshwater delivery to the Arctic Ocean and amplified the need to understand the impact of Greenland Ice Sheet meltwater on Arctic greenhouse gas budgets. We evaluate subglacial discharge from the Greenland Ice Sheet for carbon dioxide (CO2) and methane (CH4) concentrations and δ13C values and use geochemical models to evaluate subglacial CH4 and CO2 sources and sinks. We compare discharge from southwest (a sub-catchment of the Isunnguata Glacier, sub-Isunnguata, and the Russell Glacier) and southern Greenland (Kiattut Sermiat). Meltwater CH4 concentrations vary by orders of magnitude between sites and are saturated with respect to atmospheric concentrations at Kiattut Sermiat. In contrast, meltwaters from southwest sites are supersaturated, even though oxidation reduces CH4 concentrations by up to 50 % during periods of low discharge. CO2 concentrations range from supersaturated at sub-Isunnguata to undersaturated at Kiattut Sermiat. CO2 is consumed by mineral weathering throughout the melt season at all sites; however, differences in the magnitude of subglacial CO2 sources result in meltwaters that are either sources or sinks of atmospheric CO2. At the sub-Isunnguata site, the predominant source of CO2 is organic matter (OM) remineralization. However, multiple or heterogeneous subglacial CO2 sources maintain atmospheric CO2 concentrations at Russell but not at Kiattut Sermiat, where CO2 is undersaturated. These results highlight a previously unrecognized degree of heterogeneity in greenhouse gas dynamics under the Greenland Ice Sheet. Future work should constrain the extent and controls of heterogeneity to improve our understanding of the impact of Greenland Ice Sheet melt on Arctic greenhouse gas budgets, as well as the role of continental ice sheets in greenhouse gas variations over glacial–interglacial timescales.


2020 ◽  
Author(s):  
Lina Teckentrup ◽  
Martin G. De Kauwe ◽  
Andrew J. Pitman ◽  
Benjamin Smith

Abstract. The El Niño‐Southern Oscillation (ENSO) influences the global climate and the variability in the terrestrial carbon cycle on interannual timescales. Two different expressions of El Niño have recently been identified: (i) Central–Pacific (CP) and (ii) Eastern–Pacific (EP). Both types of El Nino are characterised by above average sea surface temperature anomalies in the respective locations. Studies exploring the impact of these expressions of El Niño on the carbon cycle have identified changes in the amplitude of the concentration of interannual atmospheric carbon dioxide (CO2) variability, as well as different lags in terrestrial CO2 release to the atmosphere following increased tropical near surface air temperature. We employ the dynamic global vegetation model LPJ–GUESS within a synthetic experimental framework to examine the sensitivity and potential long term impacts of these two expressions of El Niño on the terrestrial carbon cycle. We manipulated the occurrence of CP and EP events in two climate reanalysis datasets during the later half of the 20th and early 21st century by replacing all EP with CP and separately all CP with EP El Niño events. We found that the different expressions of El Niño affect interannual variability in the terrestrial carbon cycle. However, the effect on longer timescales was negligible for both climate reanalysis datasets. We conclude that capturing any future trends in the relative frequency of CP and EP El Niño events may not be critical for robust simulations of the terrestrial carbon cycle.


2007 ◽  
Vol 4 (3) ◽  
pp. 1877-1921 ◽  
Author(s):  
B. Schneider ◽  
L. Bopp ◽  
M. Gehlen ◽  
J. Segschneider ◽  
T. L. Frölicher ◽  
...  

Abstract. This study compares spatial and temporal variability in net primary productivity (PP) and particulate organic carbon (POC) export production (EP) from three different coupled climate carbon cycle models (IPSL, MPIM, NCAR) with observation-based estimates derived from satellite measurements of ocean colour and inverse modelling. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006)\\nocite{Behrenfeld06} with stronger stratification (higher SSTs) leading to negative PP anomalies and vice versa. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for global PP anomalies. Two of the models also reproduce the inverse relationship between stratification (SST) and PP, especially in the equatorial Pacific. With the help of the model results we are able to explain the chain of cause and effect leading from stratification (SST) through nutrient concentrations to PP and finally to EP. There are significant uncertainties in observational PP and especially EP. Our finding of a good agreement between independent estimates from coupled models and satellite observations provides increased confidence that such models can be used as a first basis to estimate the impact of future climate change on marine productivity and carbon export.


2010 ◽  
Vol 2 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Martin Lukac ◽  
Alexandru Milcu ◽  
Dennis Wildman ◽  
Rob Anderson ◽  
Tom Sloan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document