scholarly journals Insights from year-long measurements of air-water CH<sub>4</sub> and CO<sub>2</sub> exchange in a coastal environment

2018 ◽  
Author(s):  
Mingxi Yang ◽  
Thomas G. Bell ◽  
Ian J. Brown ◽  
James R. Fishwick ◽  
Vassilis Kitidis ◽  
...  

Abstract. Air-water CH4 and CO2 fluxes were directly measured using the eddy covariance technique at the Penlee Point Atmospheric Observatory on the southwest coast of the United Kingdom from September 2015 to August 2016. The high frequency, year-long measurements provide unprecedented detail into the variability of these Greenhouse Gas fluxes from seasonal to diurnal and to semi-diurnal timescales. Depending on the wind sector, fluxes measured at this site are indicative of air-water exchange in coastal seas as well as in an outer estuary. For the open water sector when winds were off the Atlantic Ocean, annual CH4 emission averaged ~ 0.05 mmol m−2 d−1. Open water CH4 flux was near zero in December and January, probably due to reduced biological production of CH4. At times of high rainfall and river flow rate, CH4 emission from the estuarine-influenced Plymouth Sound sector was several times higher than emission from the open water sector. The implied CH4 saturation, derived from the measured fluxes and a wind speed dependent gas transfer velocity parameterization, of over 1000 % in the Plymouth Sound is within range of in situ dissolved CH4 measurements near the mouth of the river Tamar. CO2 flux from the open water sector was generally from sea-to-air in autumn and winter and from air-to-sea in late spring and summer, with an annual mean flux of near zero. CO2 flux from the Plymouth Sound sector was more positive, consistent with a higher dissolved CO2 concentration in the estuarine waters. A diurnal signal in CO2 flux and implied dissolved pCO2 are clearly observed for the Plymouth Sound sector and also evident for the open water sector during biologically productive periods. These observations suggest that coastal CO2 efflux may be underestimated if the sampling strategy is limited to daytime only. Combining the fluxes with in situ dissolved pCO2 measurements within the flux footprints allows us to estimate the CO2 transfer velocity. The gas transfer velocity vs. wind speed relationship at this coastal location agrees reasonably well with previous open water parameterizations in the mean, but demonstrates considerable variability. We discuss the influences of biological productivity and bottom-driven turbulence on coastal air-water gas exchange.

2019 ◽  
Vol 16 (5) ◽  
pp. 961-978 ◽  
Author(s):  
Mingxi Yang ◽  
Thomas G. Bell ◽  
Ian J. Brown ◽  
James R. Fishwick ◽  
Vassilis Kitidis ◽  
...  

Abstract. Air–water CH4 and CO2 fluxes were directly measured using the eddy covariance technique at the Penlee Point Atmospheric Observatory on the southwest coast of the United Kingdom from September 2015 to August 2016. The high-frequency, year-long measurements provide unprecedented detail on the variability of these greenhouse gas fluxes from seasonal to diurnal and to semi-diurnal (tidal) timescales. Depending on the wind sector, fluxes measured at this site are indicative of air–water exchange in coastal seas as well as in an outer estuary. For the open-water sector when winds were off the Atlantic Ocean, CH4 flux was almost always positive (annual mean of ∼0.05 mmol m−2 d−1) except in December and January, when CH4 flux was near zero. At times of high rainfall and river flow rate, CH4 emission from the estuarine-influenced Plymouth Sound sector was several times higher than emission from the open-water sector. The implied CH4 saturation (derived from the measured fluxes and a wind-speed-dependent gas transfer velocity parameterization) of over 1000 % in the Plymouth Sound is within range of in situ dissolved CH4 measurements near the mouth of the river Tamar. CO2 flux from the open-water sector was generally from sea to air in autumn and winter and from air to sea in late spring and summer, with an annual mean flux of near zero. A diurnal signal in CO2 flux and implied partial pressure of CO2 in water (pCO2) are clearly observed for the Plymouth Sound sector and also evident for the open-water sector during biologically productive periods. These observations suggest that coastal CO2 efflux may be underestimated if sampling strategies are limited to daytime only. Combining the flux data with seawater pCO2 measurements made in situ within the flux footprint allows us to estimate the CO2 transfer velocity. The gas transfer velocity and wind speed relationship at this coastal location agrees reasonably well with previous open-water parameterizations in the mean but demonstrates considerable variability. We discuss the influences of biological productivity, bottom-driven turbulence and rainfall on coastal air–water gas exchange.


2012 ◽  
Vol 9 (8) ◽  
pp. 9993-10017
Author(s):  
P. Otero ◽  
X. A. Padín ◽  
M. Ruiz-Villarreal ◽  
L. M. García-García ◽  
A. F. Ríos ◽  
...  

Abstract. The estimation of sea-air CO2 fluxes are largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from using different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim), one regional high-resolution forecast model (HIRLAM-AEMet) and QuikSCAT winds, in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle may differ up to 240% depending on the wind speed product and the gas exchange parameterization. The comparison of satellite and model derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In this region, QuikSCAT has the best performing, although ERA-Interim becomes the best choice in areas near the coastline or when the time resolution is the constraint.


2013 ◽  
Vol 10 (5) ◽  
pp. 2993-3005 ◽  
Author(s):  
P. Otero ◽  
X. A. Padin ◽  
M. Ruiz-Villarreal ◽  
L. M. García-García ◽  
A. F. Ríos ◽  
...  

Abstract. The estimation of sea–air CO2 fluxes is largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from the use of different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim), one high-resolution regional forecast model (HIRLAM-AEMet), winds derived under the Cross-Calibrated Multi-Platform (CCMP) project, and QuikSCAT winds in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle (September 2002–September 2003) may vary by a factor of ~ 3 depending on the selected wind speed product and the gas exchange parameterization, with the highest impact due to the last one. The comparison of satellite- and model-derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In the coastal region, the presence of land and the time resolution are the main constraints of QuikSCAT, which turns CCMP and ERA-Interim in the preferred options.


Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 230
Author(s):  
Mariana Ribas-Ribas ◽  
Gianna Battaglia ◽  
Matthew P. Humphreys ◽  
Oliver Wurl

Carbon dioxide (CO2) fluxes between the ocean and atmosphere (FCO2) are commonly computed from differences between their partial pressures of CO2 (ΔpCO2) and the gas transfer velocity (k). Commonly used wind-based parameterizations for k imply a zero intercept, although in situ field data below 4 m s−1 are scarce. Considering a global average wind speed over the ocean of 6.6 m s−1, a nonzero intercept might have a significant impact on global FCO2. Here, we present a database of 245 in situ measurements of k obtained with the floating chamber technique (Sniffle), 190 of which have wind speeds lower than 4 m s−1. A quadratic parameterization with wind speed and a nonzero intercept resulted in the best fit for k. We further tested FCO2 calculated with a different parameterization with a complementary pCO2 observation-based product. Furthermore, we ran a simulation in a well-tested ocean model of intermediate complexity to test the implications of different gas transfer velocity parameterizations for the natural carbon cycle. The global ocean observation-based analysis suggests that ignoring a nonzero intercept results in an ocean-sink increase of 0.73 Gt C yr−1. This corresponds to a 28% higher uptake of CO2 compared with the flux calculated from a parameterization with a nonzero intercept. The differences in FCO2 were higher in the case of low wind conditions and large ΔpCO2 between the ocean and atmosphere. Such conditions occur frequently in the Tropics.


Tellus B ◽  
1993 ◽  
Vol 45 (3) ◽  
pp. 299-300 ◽  
Author(s):  
Robert C. Upstill-Goddard ◽  
Andrew J. Watson ◽  
Peter S. Liss

2014 ◽  
Vol 14 (21) ◽  
pp. 28453-28482
Author(s):  
T. G. Bell ◽  
W. De Bruyn ◽  
C. A. Marandino ◽  
S. D. Miller ◽  
C. S. Law ◽  
...  

Abstract. Air/sea dimethylsulfide (DMS) fluxes and bulk air/sea gradients were measured over the Southern Ocean in February/March 2012 during the Surface Ocean Aerosol Production (SOAP) study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (>15 nM). Gas transfer coefficients were considerably scattered at wind speeds above 5 m s−1. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A~flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data shows no obvious modification of the gas transfer-wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.


2009 ◽  
Vol 6 (6) ◽  
pp. 1105-1114 ◽  
Author(s):  
M. Ll. Calleja ◽  
C. M. Duarte ◽  
Y. T. Prairie ◽  
S. Agustí ◽  
G. J. Herndl

Abstract. Air-sea CO2 exchange depends on the air-sea CO2 gradient and the gas transfer velocity (k), computed as a function of wind speed. Large discrepancies among relationships predicting k from wind suggest that other processes also contribute significantly to modulate CO2 exchange. Here we report, on the basis of the relationship between the measured gas transfer velocity and the organic carbon concentration at the ocean surface, a significant role of surface organic matter in suppressing air-sea gas exchange, at low and intermediate winds, in the open ocean, confirming previous observations. The potential role of total surface organic matter concentration (TOC) on gas transfer velocity (k) was evaluated by direct measurements of air-sea CO2 fluxes at different wind speeds and locations in the open ocean. According to the results obtained, high surface organic matter contents may lead to lower air-sea CO2 fluxes, for a given air-sea CO2 partial pressure gradient and wind speed below 5 m s−1, compared to that observed at low organic matter contents. We found the bias in calculated gas fluxes resulting from neglecting TOC to co-vary geographically and seasonally with marine productivity. These results support previous evidences that consideration of the role of organic matter in modulating air-sea CO2 exchange may improve flux estimates and help avoid possible bias associated to variability in surface organic concentration across the ocean.


2013 ◽  
Vol 70 (12) ◽  
pp. 1757-1764 ◽  
Author(s):  
Dominic Vachon ◽  
Yves T. Prairie

Air–water diffusive gas flux is commonly determined using measurements of gas concentrations and an estimate of gas transfer velocity (k600) usually derived from wind speed. The great heterogeneity of aquatic systems raises questions about the appropriateness of using a single wind-based model to predict k600 in all aquatic systems. Theoretical considerations suggest that wind speed to k600 relationships should instead be system-specific. Using data collected from aquatic systems of different sizes, we show that k600 is related to fetch and other measures of ecosystem size. Lake area together with wind speed provided the best predictive model of gas transfer velocity and explained 68% of the variability in individual k600 measurements. For a moderate wind speed of 5 m·s−1, predicted k600 varied from 6 cm·h−1 in a small 1 ha lake to over 13 cm·h−1 in a 100 km2 system. Wave height is also shown to be a promising integrative predictor variable. The modulating influence of system size on wind speed – gas transfer velocity relationships can have a large impact on upscaling exercises of gas exchange at the whole landscape level.


Sign in / Sign up

Export Citation Format

Share Document