Supplementary material to "Effect of crustose lichen (<i>Ochrolecia frigida</i>) on soil CO<sub>2</sub> efflux in a sphagnum moss community over western Alaska tundra"

Author(s):  
Yongwon Kim ◽  
Sang-Jong Park ◽  
Bang-Yong Lee
2019 ◽  
Author(s):  
Yongwon Kim ◽  
Sang-Jong Park ◽  
Bang-Yong Lee

Abstract. Soil CO2 efflux-measurements represent an important component for estimating an annual carbon budget in response to changes in increasing air temperature, degradation of permafrost, and snow-covered extents in the Subarctic and Arctic. However, it is not widely known what is the effect of curstose lichen (Ochrolecia frigida) infected sphagnum moss on soil CO2 emission, despite the significant ecological function of sphagnum, and how lichen gradually causes the withering to death of intact sphagnum moss. Here, continuous soil CO2 efflux measurements by a forced diffusion (FD) chamber were investigated for intact and crustose lichen sphagnum moss covering over a tundra ecosystem of western Alaska during the growing seasons of 2015 and 2016. We found that CO2 efflux in crustose lichen during the growing season of 2016 was 14 % higher than in healthy sphagnum moss community, suggesting that temperature and soil moisture are invaluable drivers for stimulating soil CO2 efflux, regardless of the restraining functions of soil moisture over emitting soil carbon. Soil moisture does not influence soil CO2 emission in crustose lichen, reflecting a limit of ecological and thermal functions relative to intact sphagnum moss. During the growing season of 2015, there is no significant difference between soil CO2 effluxes in intact and crustose lichen sphagnum moss patches, based on a one-way ANOVA at the 95 % confidence level (p 


2015 ◽  
Vol 42 (1) ◽  
pp. 1-9 ◽  
Author(s):  
P. G. Ayres

Isaac Bayley Balfour was a systematist specializing in Sino-Himalayan plants. He enjoyed a long and exceptionally distinguished academic career yet he was knighted, in 1920, “for services in connection with the war”. Together with an Edinburgh surgeon, Charles Cathcart, he had discovered in 1914 something well known to German doctors; dried Sphagnum (bog moss) makes highly absorptive, antiseptic wound dressings. Balfour directed the expertise and resources of the Royal Botanic Garden, Edinburgh (of which he was Keeper), towards the identification of the most useful Sphagnum species in Britain and the production of leaflets telling collectors where to find the moss in Scotland. By 1918 over one million such dressings were used by British hospitals each month. Cathcart's Edinburgh organisation, which received moss before making it into dressings, proved a working model soon adopted in Ireland, and later in both Canada and the United States.


2014 ◽  
Vol 10 ◽  
pp. 113-121
Author(s):  
Mateusz Wilk ◽  
Julia Pawłowska ◽  
Marta Wrzosek ◽  
Michał Gorczak ◽  
Małgorzata Suska-Malawska

During a 35-month study on the decomposition of Sphagnum moss litter in poor fen and pine bog forest, an intensive colonization of litter-bags by mycorrhizal roots was observed during the decomposition process. Content of mycorrhizal roots in litter-bags, expressed as % mass of roots, was generally increasing during the decomposition in pine bog forest, and fluctuating during decomposition on poor fen, although in both cases the results were statistically insignificant. Two morphotypes of ericoid roots and two morphotypes of ectomycorrhizal roots were recorded from litter-bags on poor fen during the decomposition experiment, while in pine bog forest one morphotype of ericoid and nine morphotypes of ectomycorrhizal roots were recorded. Molecular identification of mycorrhizal roots succeeded only in the case of one ericoid and six putatively ectomycorrhizal morphotypes. Most morphotypes were recorded only once during the whole 35-month decomposition period, and only one ericoid and one ectomycorrhizal morphotypes were shared between the poor fen and pine bog forest communities.


Author(s):  
Indah Pratiwi ◽  
Yanti Sri Rezeki

This research aims to design workbook based on the scientific approach for teaching writing descriptive text. This research was conducted on the seventh-grade students of SMPN 24 Pontianak. The method of this research is ADDIE (Analysis, Design, Development, Implementation, and Evaluation) with the exclusion of Implementation and Evaluation phases. This material was designed as supplementary material to support the course book used especially in teaching writing of descriptive text. The respondents in this research were the seventh-grade students and an English teacher at SMPN 24 Pontianak. In this research, the researchers found that workbook based on scientific approach fulfilled the criteria of the good book to teach writing descriptive text. The researchers conducted an internal evaluation to see the usability and the feasibility of the workbook. The result of the evaluation is 89%. It showed that the workbook is feasible to be used by students as the supplementary material to support the main course book and help the students improve their writing ability in descriptive text.


2019 ◽  
Author(s):  
Oriol Planas ◽  
Feng Wang ◽  
Markus Leutzsch ◽  
Josep Cornella

The ability of bismuth to maneuver between different oxidation states in a catalytic redox cycle, mimicking the canonical organometallic steps associated to a transition metal, is an elusive and unprecedented approach in the field of homogeneous catalysis. Herein we present a catalytic protocol based on bismuth, a benign and sustainable main-group element, capable of performing every organometallic step in the context of oxidative fluorination of boron compounds; a territory reserved to transition metals. A rational ligand design featuring hypervalent coordination together with a mechanistic understanding of the fundamental steps, permitted a catalytic fluorination protocol based on a Bi(III)/Bi(V) redox couple, which represents a unique example where a main-group element is capable of outperforming its transition metal counterparts.<br>A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.<br>


Sign in / Sign up

Export Citation Format

Share Document