mycorrhizal roots
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 19)

H-INDEX

50
(FIVE YEARS 2)

2021 ◽  
Vol 14 (1) ◽  
pp. 31
Author(s):  
Khachonphong Nopphakat ◽  
Phanthipha Runsaeng ◽  
Lompong Klinnawee

Flooding in rainfed lowlands greatly impairs the mutualistic relationship between indigenous arbuscular mycorrhizal fungi (AMF) and rice. In flooded soils, root colonization by AMF is arrested, but some AMF genera, defined as the core AMF, remain present. However, the core AMF in rainfed lowlands and their symbiotic roles remain unknown. Here, we showed that Acaulospora fungi were the core AMF in rice seedling roots of the Sangyod Muang Phatthalung (SMP) landrace rice variety grown in non-flooded and flooded paddy soils. Subsequently, indigenous Acaulospora spores were propagated by trap cultures using maize as the host plants. Therefore, to clarify the roles of cultured Acaulospora spores in a symbiotic partnership, the model japonica rice variety Nipponbare was grown in sterile soil inoculated with Acaulospora spores, and recolonized with a native microbial filtrate from the organic rice paddy soil. Our data demonstrated that the inoculation of Acaulospora spores in well-drained soil under a nutrient-sufficient condition for six weeks enabled 70 percent of the rice roots to be colonized by the fungi, leading to higher phosphate (Pi) accumulation in the mycorrhizal roots. Unexpectedly, the growth of rice seedlings was significantly suppressed by inoculation while photosynthetic parameters such as fractions of incoming light energy and relative chlorophyll content were unaltered. In the soil, the Acaulospora fungi increased soil phosphorus (P) availability by enhancing the secretion of acid phosphatase in the mycorrhizal roots. The findings of this work elucidate the symbiotic roles of the dominant Acaulospora fungi from lowland rice paddies.


2021 ◽  
Vol 22 (24) ◽  
pp. 13677
Author(s):  
Kiril Mishev ◽  
Petre I. Dobrev ◽  
Jozef Lacek ◽  
Roberta Filepová ◽  
Bistra Yuperlieva-Mateeva ◽  
...  

Belowground interactions of plants with other organisms in the rhizosphere rely on extensive small-molecule communication. Chemical signals released from host plant roots ensure the development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same signaling molecules and to trigger their own seed germination in the immediate vicinity of host roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid, indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants, pointing to a dominant role of the holoparasite within the tripartite system.


Oecologia ◽  
2021 ◽  
Author(s):  
Katilyn V. Beidler ◽  
Young E. Oh ◽  
Seth G. Pritchard ◽  
Richard P. Phillips

2021 ◽  
Vol 78 (2) ◽  
pp. 112-122
Author(s):  
J. Kumar ◽  
◽  
N.S. Atri ◽  

In the course of the present study, surveys on occurrence and distribution of ectomycorrhizal (EcM) fungi in tropical sal forests of foothills of the Himalayas, India, were undertaken. The species of two genera of agarics, namely Asproinocybe and Inocybe, were found organically associated with the roots of Shorea robusta (sal tree). However, prior to our study the genus Asproinocybe has not been reported from India. In this article, the morpho-anatomical details of mycorrhizal roots of Shorea robusta associated with Asproinocybe lactifera and Inocybe purpureoflavida are provided for the first time. The EcM colonized roots of the two species are distinguished by differences in the shape and colour of the roots, surface texture, size and shape of cystidia, type of mantle, as well as different chemical reactions. Asproinocybe lactifera EcM is mainly characterised by a monopodial pinnate mycorrhizal system with the dark brown to reddish brown and loose cottony surface, while in Inocybe purpureoflavida it is irregularly pinnate to coralloid, silvery grey to reddish brown, with densely woolly surface. The outer mantle layer is heterogeneous with obclavate to awl-shaped cystidia in Asproinocybe lactifera, whereas Inocybe purpureoflavida EcM have a plectenchymatous outer mantle with subcylindrical to obclavate metuloidal and non-metuloidal cystidia. The presence of lactifers in the mantle is a unique feature in Asproinocybe lactifera as compared to Inocybe purpureoflavida.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Sebastiana ◽  
A. Gargallo-Garriga ◽  
J. Sardans ◽  
M. Pérez-Trujillo ◽  
F. Monteiro ◽  
...  

AbstractMycorrhizas are known to have a positive impact on plant growth and ability to resist major biotic and abiotic stresses. However, the metabolic alterations underlying mycorrhizal symbiosis are still understudied. By using metabolomics and transcriptomics approaches, cork oak roots colonized by the ectomycorrhizal fungus Pisolithus tinctorius were compared with non-colonized roots. Results show that compounds putatively corresponding to carbohydrates, organic acids, tannins, long-chain fatty acids and monoacylglycerols, were depleted in ectomycorrhizal cork oak colonized roots. Conversely, non-proteogenic amino acids, such as gamma-aminobutyric acid (GABA), and several putative defense-related compounds, including oxylipin-family compounds, terpenoids and B6 vitamers were induced in mycorrhizal roots. Transcriptomic analysis suggests the involvement of GABA in ectomycorrhizal symbiosis through increased synthesis and inhibition of degradation in mycorrhizal roots. Results from this global metabolomics analysis suggest decreases in root metabolites which are common components of exudates, and in compounds related to root external protective layers which could facilitate plant-fungal contact and enhance symbiosis. Root metabolic pathways involved in defense against stress were induced in ectomycorrhizal roots that could be involved in a plant mechanism to avoid uncontrolled growth of the fungal symbiont in the root apoplast. Several of the identified symbiosis-specific metabolites, such as GABA, may help to understand how ectomycorrhizal fungi such as P. tinctorius benefit their host plants.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 251
Author(s):  
Rafael B. S. Valadares ◽  
Fabio Marroni ◽  
Fabiano Sillo ◽  
Renato R. M. Oliveira ◽  
Raffaella Balestrini ◽  
...  

The study of orchid mycorrhizal interactions is particularly complex because of the peculiar life cycle of these plants and their diverse trophic strategies. Here, transcriptomics has been applied to investigate gene expression in the mycorrhizal roots of Limodorum abortivum, a terrestrial mixotrophic orchid that associates with ectomycorrhizal fungi in the genus Russula. Our results provide new insights into the mechanisms underlying plant–fungus interactions in adult orchids in nature and in particular into the plant responses to the mycorrhizal symbiont(s) in the roots of mixotrophic orchids. Our results indicate that amino acids may represent the main nitrogen source in mycorrhizal roots of L. abortivum, as already suggested for orchid protocorms and other orchid species. The upregulation, in mycorrhizal L. abortivum roots, of some symbiotic molecular marker genes identified in mycorrhizal roots from other orchids as well as in arbuscular mycorrhiza, may mirror a common core of plant genes involved in endomycorrhizal symbioses. Further efforts will be required to understand whether the specificities of orchid mycorrhiza depend on fine-tuned regulation of these common components, or whether specific additional genes are involved.


2021 ◽  
Author(s):  
Leonie H Luginbuehl ◽  
Harrie van Erp ◽  
Henry Cheeld ◽  
Kirankumar S Mysore ◽  
Jiangqi Wen ◽  
...  

ABSTRACTArbuscular mycorrhizal fungi (AMF) rely on their host plants to provide them with fatty acids (FA), but the precise form(s) in which they are supplied is still unclear. Here we show that ectopic expression of the transcription factor REQUIRED FOR ARBUSCULAR MYCORRHIZATION 1 (RAM1) can drive secretion of 2-monoacylglycerols (2MGs) from Medicago truncatula roots and that their main FA moiety is palmitic acid, although myristic acid and stearic acid were also detected. RAM1-dependent 2MG secretion requires the acyl-acyl carrier protein thioesterase FATM, the glycerol-3-phosphate (G3P) acyltransferase RAM2 and the ATP binding cassette transporter STR. Furthermore, 14C glycerol labelling experiments using mycorrhizal M. truncatula roots that are deficient in glycerol kinase, FAD-dependent G3P dehydrogenase and the G3P acyltransferase RAM2 suggest that most of the glyceryl moieties in Rhizophagus irregularis storage lipids are provided by their host plant through the 2MG pathway. Taken together, our data support the hypothesis that the plant exports 2MGs across the peri-arbuscular membrane in mycorrhizal roots and that the AMF receive and utilise both the FA and glyceryl moieties to make their storage lipids.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hai-Hua Wang ◽  
Hong-Long Chu ◽  
Qing Dou ◽  
Huan Feng ◽  
Ming Tang ◽  
...  

In terrestrial ecosystems, mycorrhizal roots play a key role in the cycling of soil carbon (C) and other nutrients. The impact of environmental factors on the mycorrhizal fungal community has been well studied; however, the seasonal variations in the root-associated fungal microbiota affected by environmental changes are less clear. To improve the understanding of how environmental factors shape the fungal microbiota in mycorrhizal roots, seasonal changes in Pinus tabuliformis root-associated fungi were investigated. In the present study, the seasonal dynamics of edaphic properties, soil enzymatic activities, root fungal colonization rates, and root-associated fungal microbiota in P. tabuliformis forests were studied across four seasons during a whole year to reveal their correlations with environmental changes. The results indicate that the soil functions, such as the enzymatic activities related to nitrogen (N) and phosphorus (P) degradation, were varied with the seasonal changes in microclimate factors, resulting in a significant fluctuation of edaphic properties. In addition, the ectomycorrhizal fungal colonization rate in the host pine tree roots increased during warm seasons (summer and autumn), while the fungal colonization rate of dark septate endophyte was declined. Moreover, the present study indicates that the fungal biomass increased in both the pine roots and rhizospheric soils during warm seasons, while the fungal species richness and diversity decreased. While the Basidiomycota and Ascomycota were the two dominant phyla in both root and soil fungal communities, the higher relative abundance of Basidiomycota taxa presented in warm seasons. In addition, the fungal microbial network complexity declined under the higher temperature and humidity conditions. The present study illustrates that the varieties in connectivity between the microbial networks and in functional taxa of root-associated fungal microbiota significantly influence the soil ecosystem functions, especially the N and P cycling.


Author(s):  
E. S. Gribchenko

The transcriptome profiles the cv. Frisson mycorrhizal roots and inoculated nitrogen-fixing nodules were investigated using the Oxford Nanopore sequencing technology. A database of gene isoforms and their expression has been created.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1700
Author(s):  
Evgeny A. Zorin ◽  
Alexey M. Afonin ◽  
Olga A. Kulaeva ◽  
Emma S. Gribchenko ◽  
Oksana Y. Shtark ◽  
...  

Alternative splicing (AS), a process that enables formation of different mRNA isoforms due to alternative ways of pre-mRNA processing, is one of the mechanisms for fine-tuning gene expression. Currently, the role of AS in symbioses formed by plants with soil microorganisms is not fully understood. In this work, a comprehensive analysis of the transcriptome of garden pea (Pisum sativum L.) roots in symbiosis with arbuscular mycorrhiza was performed using RNAseq and following bioinformatic analysis. AS profiles of mycorrhizal and control roots were highly similar, intron retention accounting for a large proportion of the observed AS types (67%). Using three different tools (SUPPA2, DRIMSeq and IsoformSwitchAnalyzeR), eight genes with AS events specific for mycorrhizal roots of pea were identified, among which four were annotated as encoding an apoptosis inhibitor protein, a serine/threonine-protein kinase, a dehydrodolichyl diphosphate synthase, and a pre-mRNA-splicing factor ATP-dependent RNA helicase DEAH1. In pea mycorrhizal roots, the isoforms of these four genes with preliminary stop codons leading to a truncated ORFs were up-regulated. Interestingly, two of these four genes demonstrating mycorrhiza-specific AS are related to the process of splicing, thus forming parts of the feedback loops involved in fine-tuning of gene expression during mycorrhization.


Sign in / Sign up

Export Citation Format

Share Document