scholarly journals Review on „Vertical distribution of planktic foraminifera through an Oxygen Minimum Zone: how assemblages and shell morphology reflect oxygen concentrations“

2020 ◽  
Author(s):  
Anonymous
2020 ◽  
Author(s):  
Catherine V. Davis ◽  
Karen Wishner ◽  
Willem Renema ◽  
Pincelli M. Hull

Abstract. Oxygen-depleted regions of the global ocean are rapidly expanding, with important implications for global biogeochemical cycles. However, our ability to make projections of a future deoxygenated ocean is limited by a lack of empirical data with which to test and constrain the behavior of global climatic and oceanographic models. We use depth-stratified plankton tows to demonstrate that some species of planktic foraminifera are adapted to life in the heart of the pelagic Oxygen Minimum Zone (OMZ). In particular, we identify two species, Globorotaloides hexagonus and Hastigerina parapelagica, living within the Eastern Tropical North Pacific OMZ. The shells of the former are preserved in marine sediments and could be used to trace the extent and intensity of low-oxygen pelagic habitats in the fossil record. Additional morphometric analyses of G. hexagonus show that shells found in the lowest oxygen environments are larger, more porous, less dense, and have more chambers in the final whorl. The association of this species with the OMZ and the apparent plasticity of its shell in response to ambient oxygenation invites the use of G. hexagonus shells in sediment cores as potential proxies for both the presence and intensity of overlying OMZs.


2015 ◽  
Vol 12 (13) ◽  
pp. 10167-10193 ◽  
Author(s):  
A. Kock ◽  
D. L. Arévalo-Martínez ◽  
C. R. Löscher ◽  
H. W. Bange

Abstract. Depth profiles of nitrous oxide (N2O) were measured during six cruises to the upwelling area and oxygen minimum zone (OMZ) off Peru in 2009 and 2012/13, covering both the coastal shelf region and the adjacent open ocean. N2O profiles displayed a strong sensitivity towards oxygen concentrations. Open ocean profiles showed a transition from a broad maximum to a double-peak structure towards the centre of the OMZ where the oxygen minimum was more pronounced. Maximum N2O concentrations in the open ocean were about 80 nM. A linear relationship between ΔN2O and apparent oxygen utilization (AOU) could be found for all measurements within the upper oxycline, with a slope similar to studies in other oceanic regions. N2O profiles close to the shelf revealed a much higher variability, with N2O concentrations in the upper oxycline reaching up to several hundred nanomoles per liter at selected stations. Due to the extremely sharp oxygen gradients at the shelf, these maxima occurred in very shallow water depths of less than 50 m. In this area, a linear relationship between ΔN2O and AOU could not be observed. N2O concentrations above 100 nM were observed at oxygen concentrations ranging from close to saturation to suboxic conditions. Our results indicate that the coastal upwelling off Peru at the shelf causes conditions that lead to extreme N2O accumulation.


2014 ◽  
Vol 11 (7) ◽  
pp. 11635-11670 ◽  
Author(s):  
N. Glock ◽  
V. Liebetrau ◽  
A. Eisenhauer

Abstract. In this study we explore the correlation of I/Ca ratios in three calcitic and one aragonitic foraminiferal species. I/Ca ratios are evaluated as possible proxies for changes in ambient redox conditions across the Peruvian oxygen minimum zone to the ambient oxygen concentrations in the habitat of the foraminiferal species studied. We test cleaning and measurement methods to determine I/Ca ratios in benthic foraminifera from the Peruvian oxygen minimum zone. All species show a positive trend in their I/Ca ratios as a function of higher oxygen concentrations and these trends are all statistically significant except for the aragonitic species Hoeglundina elegans. The most promising species appears to be Uvigerina striata which shows a highly statistically significant correlation between I/Ca ratios and bottom water (BW) oxygenation (I/Ca = 0.032(± 0.004)[O2]BW + 0.29(± 0.03), R2 = 0.61, F = 75, P < 0.0001). Although I/Ca ratios in benthic foraminifera might prove to be a valuable proxy for changing redox-conditions the iodine volatility in acidic solutions, the species dependency ofI/Ca–[O2]BW correlations, and the individual variability of single tests severely interfere with the observed I/Ca–[O2]BW relationship.


2013 ◽  
Vol 10 (6) ◽  
pp. 9451-9492 ◽  
Author(s):  
L. A. Levin ◽  
A. L. McGregor ◽  
G. F. Mendoza ◽  
C. Woulds ◽  
P. Cross ◽  
...  

Abstract. There is a growing need to understand the ability of bathyal assemblages to recover from disturbance and oxygen stress, as human activities and expanding oxygen minimum zones increasingly affect deep continental margins. The effects of a pronounced oxygen minimum zone (OMZ) on slope benthic community structure have been studied in both the Western and Eastern Arabian Sea; however, little is known about the dynamics or resilience of these benthic populations. To examine the influence of oxygen and phytodetritus on short-term settlement patterns we conducted colonization experiments along two cross-OMZ transects on the West Indian continental margin. Four colonization trays were deployed at each depth for 4 days at 542 and 802 m (16°58′ N) and for 9 days at 817 m and 1147 m (17°31′ N). Oxygen concentrations ranged from 0.9 μM (0.02 mL L−1) at 542 m to 22 μM (0.5 mL L−1) at 1147 m. All trays contained local defaunated sediments; half of the trays at each depth also contained 13C/15N-labeled phytodetritus mixed into the sediments. Sediment cores were collected between 535 m and 1140 m for analysis of background (source) macrofaunal (> 300 μm) densities and composition. Background densities ranged from 0 ind. m−2 (at 535–542 m) to 7400 ind. m−2, with maximum values on both transects at 700–800 m. Macrofaunal colonizer densities ranged from 0 ind. m−2 at 542 m, where oxygen was lowest, to average values of 142 ind. m−2 at 800 m, and 3074 ind. m−2 at 1147 m, where oxygen concentration was highest. These were equal to 4.3% and 151% of the ambient background community at 800 m and 1147 m, respectively. Community structure of settlers showed no response to the presence of phytodetritus. Increasing depth and oxygen concentration, however, significantly influenced the community composition and abundance of colonizing macrofauna. Polychaetes constituted 92.4% of the total colonizers, followed by crustaceans (4.2%), mollusks (2.5%), and echinoderms (0.8%). The majority of colonizers were found at 1147m; 88.5% of these were Capitella sp., although they were rare in the background community. Colonists at 800 and 1147 m also included ampharetid, spionid, syllid, lumbrinerid, cirratulid, cossurid and sabellid polychaetes. Consumption of δ13C/ δ15N-labeled phytodetritus was observed for macrofaunal foraminifera (too large to be colonizers) at the 542 and 802/817 m sites, and by metazoan macrofauna mainly at the deepest, better oxygenated site. Calcareous foraminifera (Uvigerina, Hoeglundina sp.), capitellid polychaetes and cumaceans were among the major consumers. These preliminary experiments suggest that bottom-water oxygen concentrations may strongly influence ecosystem services on continental margins, as reflected in rates of colonization by benthos and colonizer processing of carbon following disturbance.


2014 ◽  
Vol 11 (23) ◽  
pp. 7077-7095 ◽  
Author(s):  
N. Glock ◽  
V. Liebetrau ◽  
A. Eisenhauer

Abstract. In this study, we explore the correlation of I/Ca ratios in three calcitic and one aragonitic foraminiferal species. I/Ca ratios are evaluated as possible proxies for changes in ambient redox conditions across the Peruvian oxygen minimum zone to the ambient oxygen concentrations in the habitat of the foraminiferal species studied. Cleaning and measurement methods for the determination of I/Ca ratios are tested. All species show a positive trend in their I/Ca ratios as a function of higher oxygen concentrations. The most promising species appears to be Uvigerina striata, which shows a highly statistically significant correlation between I/Ca ratios and bottom water (BW) oxygenation (I/Ca = 0.032(±0.004) × [O2]BW + 0.29(±0.03), R2 = 0.61, F = 75, P < 0.0001). Only for the aragonitic species Hoeglundina elegans is this relationship not significant. The iodine volatility in acidic solutions, the species dependency of I/Ca–[O2]BW correlations, and the individual variability of single tests, need to be accounted for when applying the I/Ca ratio as a proxy for redox conditions.


Sign in / Sign up

Export Citation Format

Share Document