scholarly journals Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance

2011 ◽  
Vol 8 (12) ◽  
pp. 3609-3629 ◽  
Author(s):  
B. B. Taylor ◽  
E. Torrecilla ◽  
A. Bernhardt ◽  
M. H. Taylor ◽  
I. Peeken ◽  
...  

Abstract. The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the RV Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which we compared to ecological provinces proposed elsewhere in the literature. As could be expected, picophytoplankton was responsible for most of the variability of PFTs in the eastern Atlantic Ocean. Our bio-optical clusters agreed well with established provinces and thus can be used to classify areas of similar biogeography. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.

2011 ◽  
Vol 8 (4) ◽  
pp. 7165-7219 ◽  
Author(s):  
B. B. Taylor ◽  
E. Torrecilla ◽  
A. Bernhardt ◽  
M. H. Taylor ◽  
I. Peeken ◽  
...  

Abstract. The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the R/V Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which are compared to ecological provinces proposed elsewhere in the literature. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.


2014 ◽  
Vol 7 (9) ◽  
pp. 3095-3112 ◽  
Author(s):  
P. Sawamura ◽  
D. Müller ◽  
R. M. Hoff ◽  
C. A. Hostetler ◽  
R. A. Ferrare ◽  
...  

Abstract. Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore–Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.


Author(s):  
D. Varade ◽  
O. Dikshit

<p><strong>Abstract.</strong> Snow cover characterization and estimation of snow geophysical parameters is a significant area of research in water resource management and surface hydrological processes. With advances in spaceborne remote sensing, much progress has been achieved in the qualitative and quantitative characterization of snow geophysical parameters. However, most of the methods available in the literature are based on the microwave backscatter response of snow. These methods are mostly based on the remote sensing data available from active microwave sensors. Moreover, in alpine terrains, such as in the Himalayas, due to the geometrical distortions, the missing data is significant in the active microwave remote sensing data. In this paper, we present a methodology utilizing the multispectral observations of Sentinel-2 satellite for the estimation of surface snow wetness. The proposed approach is based on the popular triangle method which is significantly utilized for the assessment of soil moisture. In this case, we develop a triangular feature space using the near infrared (NIR) reflectance and the normalized differenced snow index (NDSI). Based on the assumption that the NIR reflectance is linearly related to the liquid water content in the snow, we derive a physical relationship for the estimation of snow wetness. The modeled estimates of snow wetness from the proposed approach were compared with in-situ measurements of surface snow wetness. A high correlation determined by the coefficient of determination of 0.94 and an error of 0.535 was observed between the proposed estimates of snow wetness and in-situ measurements.</p>


2020 ◽  
Vol 17 (21) ◽  
pp. 5355-5364
Author(s):  
Maria Paula da Silva ◽  
Lino A. Sander de Carvalho ◽  
Evlyn Novo ◽  
Daniel S. F. Jorge ◽  
Claudio C. F. Barbosa

Abstract. Given the importance of dissolved organic matter (DOM) in the carbon cycling of aquatic ecosystems, information on its seasonal variability is crucial. In this study we assess the use of optical absorption indices available in the literature based on in situ data to both characterize the seasonal variability of DOM in a highly complex environment and for application in large-scale studies using remote sensing data. The study area comprises four lakes located in the Mamirauá Sustainable Development Reserve (MSDR). Samples for the determination of colored dissolved organic matter (CDOM) and measurements of remote sensing reflectance (Rrs) were acquired in situ. The Rrs was used to simulate the response of the visible bands of the Sentinel-2 MultiSpectral Instrument (MSI), which was used in the proposed models. Differences between lakes were tested using the CDOM indices. The results highlight the role of the flood pulse in the DOM dynamics at the floodplain lakes. The validation results show that the use of the absorption coefficient of CDOM (aCDOM) as a proxy of the spectral slope between 275 and 295 nm (S275–295) during rising water is worthwhile, demonstrating its potential application to Sentinel-2 MSI imagery data for studying DOM dynamics on the large scale.


Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 14
Author(s):  
Gordana Kaplan ◽  
Zehra Yigit Avdan ◽  
Serdar Goncu ◽  
Ugur Avdan

In water resources management, remote sensing data and techniques are essential in watershed characterization and monitoring, especially when no data are available. Water quality is usually assessed through in-situ measurements that require high cost and time. Water quality parameters help in decision making regarding the further use of water-based on its quality. Turbidity is an important water quality parameter and an indicator of water pollution. In the past few decades, remote sensing has been widely used in water quality research. In this study, we compare turbidity parameters retrieved from a high-resolution image with in-situ measurements collected from Borabey Lake, Turkey. Here, the use of RapidEye-3 images (5 m-resolution) allows for detailed assessment of spatio-temporal evaluation of turbidity, through the normalized difference turbidity index (NDTI). The turbidity results were then compared with data from 21 in-situ measurements collected in the same period. The actual water turbidity measurements showed high correlation with the estimated NDTI mean values with an R2 of 0.84. The research findings support the use of remote sensing data of RadipEye-3 to estimate water quality parameters in small water areas. For future studies, we recommend investigating different water quality parameters using high-resolution remote sensing data.


2016 ◽  
Author(s):  
Patricia Sawamura ◽  
Richard H. Moore ◽  
Sharon P. Burton ◽  
Eduard Chemyakin ◽  
Detlef Müller ◽  
...  

Abstract. Over 700 vertically-resolved retrievals of effective radii, number, volume, and surface-area concentrations of aerosols obtained from inversion of airborne multiwavelength High Spectral Resolution Lidar (HSRL-2) measurements are compared to vertically resolved airborne in situ measurements obtained during DISCOVER-AQ campaign from 2013 in California and Texas. In situ measurements of dry and humidified scattering, dry absorption, and dry size distributions are used to estimate hygroscopic adjustments which, in turn, are applied to the dry in situ measurements before comparison to HSRL-2 measurements and retrievals. The HSRL-2 retrievals of size parameters agree well with the in situ measurements once the hygroscopic adjustments are applied to the latter, with biases smaller than 25 % for surface-area concentrations, and smaller than 10 % for volume concentration. A closure study is performed by comparing the extinction and backscatter measured with the HSRL-2 with those calculated from the in situ size distributions and Mie theory, once refractive indices (at ambient RH) and hygroscopic adjustments are calculated and applied. The results of this closure study revealed discrepancies between the HSRL-2 optical measurements and those calculated from in situ measurements, in both California and Texas datasets, with the aerosol extinction and backscatter coefficients measured with the HSRL-2 being larger than those calculated from the adjusted in situ measurements and Mie theory. These discrepancies are further investigated and discussed in light of the many challenges often present in closure studies between in situ and remote sensing systems, such as: limitations in covering the same size range of particles with in situ and remote sensing instruments, as well as simplified parameterizations and assumptions used when dry in situ data are adjusted to account for aerosol hygroscopicity.


Sign in / Sign up

Export Citation Format

Share Document