scholarly journals Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China

2015 ◽  
Vol 12 (13) ◽  
pp. 10359-10387 ◽  
Author(s):  
W. Y. Dong ◽  
X. Y. Zhang ◽  
X. Y. Liu ◽  
X. L. Fu ◽  
F. S. Chen ◽  
...  

Abstract. Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-Glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the PLFA abundanceespecially in the N2P treatment, the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK. Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. There were also significant relationships between gram-positive (G+) bacteria and all three soil enzymes. These findings indicate that G+ bacteria is the most important microbial community in C, N, and P transformations in Chinese fir plantations, and that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.

2015 ◽  
Vol 12 (18) ◽  
pp. 5537-5546 ◽  
Author(s):  
W. Y. Dong ◽  
X. Y. Zhang ◽  
X. Y. Liu ◽  
X. L. Fu ◽  
F. S. Chen ◽  
...  

Abstract. Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the phospholipid fatty acids (PLFAs) abundance especially in the N2P (100 kg ha−1 yr−1 of N +50 kg ha−1 yr−1 of P) treatment; the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK (control). Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. These findings indicate that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul Carini ◽  
Manuel Delgado-Baquerizo ◽  
Eve-Lyn S. Hinckley ◽  
Hannah Holland‐Moritz ◽  
Tess E. Brewer ◽  
...  

ABSTRACT Few studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from dead cells or secreted extracellular DNA) may dampen temporal signals. Here, we disentangle the relationships among spatial, temporal, and relic DNA effects on prokaryotic and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over 6 months to discriminate between temporal variability, intraplot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intraplot spatial variability in microbial community composition was strong and independent of relic DNA effects and that these spatial patterns persisted throughout the study. When controlling for intraplot spatial variability, we identified significant temporal variability in both plots over the 6-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show that these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes. IMPORTANCE Nearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here, we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling was required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from nonliving sources masks important temporal patterns. We identified groups of microbes with shared temporal responses and show that these patterns were predictable from changes in soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Grace Pold ◽  
Luiz A. Domeignoz-Horta ◽  
Kristen M. DeAngelis

Soils store more carbon than the biosphere and atmosphere combined, and the efficiency to which soil microorganisms allocate carbon to growth rather than respiration is increasingly considered a proxy for the soil capacity to store carbon. This carbon use efficiency (CUE) is measured via different methods, and more recently, the 18O-H2O method has been embraced as a significant improvement for measuring CUE of soil microbial communities. Based on extrapolating 18O incorporation into DNA to new biomass, this measurement makes various implicit assumptions about the microbial community at hand. Here we conducted a literature review to evaluate how viable these assumptions are and then developed a mathematical model to test how violating them affects estimates of the growth component of CUE in soil. We applied this model to previously collected data from two kinds of soil microbial communities. By changing one parameter at a time, we confirmed our previous observation that CUE was reduced by fungal removal. Our results also show that depending on the microbial community composition, there can be substantial discrepancies between estimated and true microbial growth. Of the numerous implicit assumptions that might be violated, not accounting for the contribution of sources of oxygen other than extracellular water to DNA leads to a consistent underestimation of CUE. We present a framework that allows researchers to evaluate how their experimental conditions may influence their 18O-H2O-based CUE measurements and suggest the parameters that need further constraining to more accurately quantify growth and CUE.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1128C-1128
Author(s):  
Shengrui Yao ◽  
Ian A. Merwin ◽  
Janice E. Thies

Apple (Malu ×domestica) replant disease (ARD) is a soil-borne disease syndrome of complex etiology that occurs worldwide when establishing new orchards in old fruit-growing sites. Methyl bromide (MB) has been an effective soil fumigant to control ARD, but safer alternatives to MB are needed. We evaluated soil microbial communities, tree growth, and fruit yield for three pre-plant soil treatments (compost amendment, soil treatment with a broad-spectrum fumigant, and untreated controls), and five clonal rootstocks (M7, M26, CG6210, CG30, and G16), in an apple replant site at Ithaca, N.Y. Molecular fingerprinting (PCR-DGGE) techniques were used to study soil microbial community composition of root-zone soil of the different soil treatments and rootstocks. Tree caliper, shoot growth, and yield were measured annually from 2002–04. Among the five rootstocks we compared, trees on CG6210 had the most growth and yield, while trees on M26 had the least growth and yield. Soil treatments altered soil microbial communities during the year after pre-plant treatments, and each treatment was associated with distinct microbial groups in hierarchical cluster analyses. However, those differences among fungal and bacterial communities diminished during the second year after planting, and soil fungal communities equilibrated faster than bacterial communities. Pre-plant soil treatments altered bulk-soil microbial community composition, but those shifts in soil microbial communities had no obvious correlation with tree performance. Rootstock genotypes were the dominant factor in tree performance after 3 years of observations, and different rootstocks were associated with characteristic bacterial, pseudomonad, fungal, and oomycetes communities in root-zone soil.


2007 ◽  
Vol 3 (5) ◽  
pp. 487-490 ◽  
Author(s):  
Richard D Bardgett ◽  
Andreas Richter ◽  
Roland Bol ◽  
Mark H Garnett ◽  
Rupert Bäumler ◽  
...  

When glaciers retreat they expose barren substrates that become colonized by organisms, beginning the process of primary succession. Recent studies reveal that heterotrophic microbial communities occur in newly exposed glacial substrates before autotrophic succession begins. This raises questions about how heterotrophic microbial communities function in the absence of carbon inputs from autotrophs. We measured patterns of soil organic matter development and changes in microbial community composition and carbon use along a 150-year chronosequence of a retreating glacier in the Austrian Alps. We found that soil microbial communities of recently deglaciated terrain differed markedly from those of later successional stages, being of lower biomass and higher abundance of bacteria relative to fungi. Moreover, we found that these initial microbial communities used ancient and recalcitrant carbon as an energy source, along with modern carbon. Only after more than 50 years of organic matter accumulation did the soil microbial community change to one supported primarily by modern carbon, most likely from recent plant production. Our findings suggest the existence of an initial stage of heterotrophic microbial community development that precedes autotrophic community assembly and is sustained, in part, by ancient carbon.


2018 ◽  
Author(s):  
Paul Carini ◽  
Manuel Delgado-Baquerizo ◽  
Eve-Lyn S. Hinckley ◽  
Hannah Holland-Moritz ◽  
Tess E Brewer ◽  
...  

AbstractFew studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from non-living cells) may dampen temporal signals. Here we disentangle the relationships among spatial, temporal, and relic DNA effects on bacterial, archaeal, and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over six months to discriminate between temporal variability, intra-plot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intra-plot spatial variability in microbial community composition was strong and independent of relic DNA effects with these spatial patterns persisting throughout the study. When controlling for intra-plot spatial variability, we identified significant temporal variability in both plots over the six-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes.ImportanceNearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling is required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from non-living microbial cells masks important temporal patterns. We identified groups of microbes that display correlated behavior over time and show that these patterns are predictable from soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities.


Sign in / Sign up

Export Citation Format

Share Document