scholarly journals Effects of Spatial Variability and Relic DNA Removal on the Detection of Temporal Dynamics in Soil Microbial Communities

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul Carini ◽  
Manuel Delgado-Baquerizo ◽  
Eve-Lyn S. Hinckley ◽  
Hannah Holland‐Moritz ◽  
Tess E. Brewer ◽  
...  

ABSTRACT Few studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from dead cells or secreted extracellular DNA) may dampen temporal signals. Here, we disentangle the relationships among spatial, temporal, and relic DNA effects on prokaryotic and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over 6 months to discriminate between temporal variability, intraplot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intraplot spatial variability in microbial community composition was strong and independent of relic DNA effects and that these spatial patterns persisted throughout the study. When controlling for intraplot spatial variability, we identified significant temporal variability in both plots over the 6-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show that these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes. IMPORTANCE Nearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here, we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling was required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from nonliving sources masks important temporal patterns. We identified groups of microbes with shared temporal responses and show that these patterns were predictable from changes in soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities.

2018 ◽  
Author(s):  
Paul Carini ◽  
Manuel Delgado-Baquerizo ◽  
Eve-Lyn S. Hinckley ◽  
Hannah Holland-Moritz ◽  
Tess E Brewer ◽  
...  

AbstractFew studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from non-living cells) may dampen temporal signals. Here we disentangle the relationships among spatial, temporal, and relic DNA effects on bacterial, archaeal, and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over six months to discriminate between temporal variability, intra-plot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intra-plot spatial variability in microbial community composition was strong and independent of relic DNA effects with these spatial patterns persisting throughout the study. When controlling for intra-plot spatial variability, we identified significant temporal variability in both plots over the six-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes.ImportanceNearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling is required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from non-living microbial cells masks important temporal patterns. We identified groups of microbes that display correlated behavior over time and show that these patterns are predictable from soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities.


2015 ◽  
Vol 12 (13) ◽  
pp. 10359-10387 ◽  
Author(s):  
W. Y. Dong ◽  
X. Y. Zhang ◽  
X. Y. Liu ◽  
X. L. Fu ◽  
F. S. Chen ◽  
...  

Abstract. Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-Glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the PLFA abundanceespecially in the N2P treatment, the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK. Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. There were also significant relationships between gram-positive (G+) bacteria and all three soil enzymes. These findings indicate that G+ bacteria is the most important microbial community in C, N, and P transformations in Chinese fir plantations, and that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Grace Pold ◽  
Luiz A. Domeignoz-Horta ◽  
Kristen M. DeAngelis

Soils store more carbon than the biosphere and atmosphere combined, and the efficiency to which soil microorganisms allocate carbon to growth rather than respiration is increasingly considered a proxy for the soil capacity to store carbon. This carbon use efficiency (CUE) is measured via different methods, and more recently, the 18O-H2O method has been embraced as a significant improvement for measuring CUE of soil microbial communities. Based on extrapolating 18O incorporation into DNA to new biomass, this measurement makes various implicit assumptions about the microbial community at hand. Here we conducted a literature review to evaluate how viable these assumptions are and then developed a mathematical model to test how violating them affects estimates of the growth component of CUE in soil. We applied this model to previously collected data from two kinds of soil microbial communities. By changing one parameter at a time, we confirmed our previous observation that CUE was reduced by fungal removal. Our results also show that depending on the microbial community composition, there can be substantial discrepancies between estimated and true microbial growth. Of the numerous implicit assumptions that might be violated, not accounting for the contribution of sources of oxygen other than extracellular water to DNA leads to a consistent underestimation of CUE. We present a framework that allows researchers to evaluate how their experimental conditions may influence their 18O-H2O-based CUE measurements and suggest the parameters that need further constraining to more accurately quantify growth and CUE.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1128C-1128
Author(s):  
Shengrui Yao ◽  
Ian A. Merwin ◽  
Janice E. Thies

Apple (Malu ×domestica) replant disease (ARD) is a soil-borne disease syndrome of complex etiology that occurs worldwide when establishing new orchards in old fruit-growing sites. Methyl bromide (MB) has been an effective soil fumigant to control ARD, but safer alternatives to MB are needed. We evaluated soil microbial communities, tree growth, and fruit yield for three pre-plant soil treatments (compost amendment, soil treatment with a broad-spectrum fumigant, and untreated controls), and five clonal rootstocks (M7, M26, CG6210, CG30, and G16), in an apple replant site at Ithaca, N.Y. Molecular fingerprinting (PCR-DGGE) techniques were used to study soil microbial community composition of root-zone soil of the different soil treatments and rootstocks. Tree caliper, shoot growth, and yield were measured annually from 2002–04. Among the five rootstocks we compared, trees on CG6210 had the most growth and yield, while trees on M26 had the least growth and yield. Soil treatments altered soil microbial communities during the year after pre-plant treatments, and each treatment was associated with distinct microbial groups in hierarchical cluster analyses. However, those differences among fungal and bacterial communities diminished during the second year after planting, and soil fungal communities equilibrated faster than bacterial communities. Pre-plant soil treatments altered bulk-soil microbial community composition, but those shifts in soil microbial communities had no obvious correlation with tree performance. Rootstock genotypes were the dominant factor in tree performance after 3 years of observations, and different rootstocks were associated with characteristic bacterial, pseudomonad, fungal, and oomycetes communities in root-zone soil.


2007 ◽  
Vol 3 (5) ◽  
pp. 487-490 ◽  
Author(s):  
Richard D Bardgett ◽  
Andreas Richter ◽  
Roland Bol ◽  
Mark H Garnett ◽  
Rupert Bäumler ◽  
...  

When glaciers retreat they expose barren substrates that become colonized by organisms, beginning the process of primary succession. Recent studies reveal that heterotrophic microbial communities occur in newly exposed glacial substrates before autotrophic succession begins. This raises questions about how heterotrophic microbial communities function in the absence of carbon inputs from autotrophs. We measured patterns of soil organic matter development and changes in microbial community composition and carbon use along a 150-year chronosequence of a retreating glacier in the Austrian Alps. We found that soil microbial communities of recently deglaciated terrain differed markedly from those of later successional stages, being of lower biomass and higher abundance of bacteria relative to fungi. Moreover, we found that these initial microbial communities used ancient and recalcitrant carbon as an energy source, along with modern carbon. Only after more than 50 years of organic matter accumulation did the soil microbial community change to one supported primarily by modern carbon, most likely from recent plant production. Our findings suggest the existence of an initial stage of heterotrophic microbial community development that precedes autotrophic community assembly and is sustained, in part, by ancient carbon.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alberto Canarini ◽  
Hannes Schmidt ◽  
Lucia Fuchslueger ◽  
Victoria Martin ◽  
Craig W. Herbold ◽  
...  

AbstractClimate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.


Author(s):  
Yoseph Delelegn ◽  
Witoon Purahong ◽  
Ali Nawaz ◽  
Hans Sandén ◽  
Douglas Godbold ◽  
...  

Ethiopia has undergone significant land use change during the past centuries, particularly deforestation. These changes have resulted in the loss of topsoil as well as the associated soil ecosystem functions. Grazing exclusion and planting of eucalyptus are measures used to recover degraded lands and reduce deforestation, respectively. Using a gradient of the intensity of land use from natural forest to croplands, we investigated whether these measures also result in restoration of the soil microbial community. We identified the soil bacterial and fungal communities using paired-end amplicon sequencing. A total of 12,765 fungal and 12,325 bacterial OTUs were detected in the five land use types, and only ca. 2% and 17% were shared among the land uses, respectively. Total fungal and bacterial OTU richness was not significantly affected by land use change, but the conversion of forest to cropland resulted in the loss of approximately 40% and 11% of the total native fungal and bacterial OTUs, respectively. Soil pH, C, N, and aggregate stability were key factors corresponding to the overall bacterial and fungal community compositions. We also showed relationships between the microbial functional group and enzyme activities. The exclusion of grazing led to an enrichment of soil microbial communities that overlapped with the communities of the natural forest. Our results suggest that remnant native forests act as refugia for microbial communities and that restoration of microbial communities and concomitant recovery of ecosystem function via deintensification of land use is possible. Keywords: ectomycorrhiza, ericoid mycorrhiza, exclosure, microbial diversity, soil enzymes


Author(s):  
Jingjie Hao ◽  
Yen Ning Chai ◽  
Lucas Dantas Lopes ◽  
Raziel A. Ordóñez ◽  
Emily E. Wright ◽  
...  

This study investigated the differences in microbial community abundance, composition and diversity throughout the depth profiles in soils collected from corn and soybean fields in lowa, USA using 16S rRNA amplicon sequencing. The results revealed decreased richness and diversity in microbial communities at increasing soil depth. Soil microbial community composition differed due to crop type only in the top 60 cm and due to location only in the top 90 cm. While the relative abundance of most phyla decreased in deep soils, the relative abundance of the phylum Proteobacteria increased and dominated agricultural soils below the depth of 90 cm. Although soil depth was the most important factor shaping microbial communities, edaphic factors including soil organic matter, soil bulk density and the length of time that deep soils were saturated with water were all significant factors explaining the variation in soil microbial community composition. Soil organic matter showed the highest correlation with the exponential decrease in bacterial abundance with depth. A greater understanding of how soil depth influences the diversity and composition of soil microbial communities is vital for guiding sampling approaches in agricultural soils where plant roots extend beyond the upper soil profile. In the long term a greater knowledge of the influence of depth on microbial communities should contribute to new strategies that enhance the sustainability of soil which is a precious resource for food security. IMPORTANCE Determining how microbial properties change across different soils and within the soil depth profile, will be potentially beneficial to understanding the long-term processes that are involved in the health of agricultural ecosystems. Most literature on soil microbes has been restricted to the easily accessible surface soils. However, deep soils are important in soil formation, carbon sequestration, and in providing nutrients and water for plants. In the most productive agricultural systems in the USA where soybean and corn are grown, crop plant roots extend into the deeper regions of soils (> 100 cm), but little is known about the taxonomic diversity or the factors that shape deep soil microbial communities. The findings reported here highlight the importance of soil depth in shaping microbial communities, provide new information about edaphic factors that influence the deep soil communities and reveal more detailed information on taxa that exist in deep agricultural soils.


Sign in / Sign up

Export Citation Format

Share Document