scholarly journals Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies

2008 ◽  
Vol 5 (3) ◽  
pp. 1867-1898 ◽  
Author(s):  
A. Graf ◽  
L. Weihermüller ◽  
J. A. Huisman ◽  
M. Herbst ◽  
J. Bauer ◽  
...  

Abstract. CO2 efflux at the soil surface is the result of respiration in different depths that are subjected to variable temperatures at the same time. Therefore, the temperature measurement depth affects the apparent temperature sensitivity of field-measured soil respiration. We summarize existing literature evidence on the importance of this effect, and describe a simple model to understand and estimate the magnitude of this potential error source for heterotrophic respiration. The model is tested against field measurements. We discuss the influence of climate (annual and daily temperature amplitude), soil properties (vertical distribution of CO2 sources, thermal and gas diffusivity), and measurement schedule (frequency, study duration, and time averaging). Q10 as a commonly used parameter describing the temperature sensitivity of soil respiration is taken as an example and computed for different combinations of the above conditions. We define conditions and data acquisition and analysis strategies that lead to lower errors in field-based Q10 determination. It was found that commonly used temperature measurement depths are likely to result in an underestimation of temperature sensitivity in field experiments. Our results also apply to activation energy as an alternative temperature sensitivity parameter.

2008 ◽  
Vol 5 (4) ◽  
pp. 1175-1188 ◽  
Author(s):  
A. Graf ◽  
L. Weihermüller ◽  
J. A. Huisman ◽  
M. Herbst ◽  
J. Bauer ◽  
...  

Abstract. CO2 efflux at the soil surface is the result of respiration in different depths that are subjected to variable temperatures at the same time. Therefore, the temperature measurement depth affects the apparent temperature sensitivity of field-measured soil respiration. We summarize existing literature evidence on the importance of this effect, and describe a simple model to understand and estimate the magnitude of this potential error source for heterotrophic respiration. The model is tested against field measurements. We discuss the influence of climate (annual and daily temperature amplitude), soil properties (vertical distribution of CO2 sources, thermal and gas diffusivity), and measurement schedule (frequency, study duration, and time averaging). Q10 as a commonly used parameter describing the temperature sensitivity of soil respiration is taken as an example and computed for different combinations of the above conditions. We define conditions and data acquisition and analysis strategies that lead to lower errors in field-based Q10 determination. It was found that commonly used temperature measurement depths are likely to result in an underestimation of temperature sensitivity in field experiments. Our results also apply to activation energy as an alternative temperature sensitivity parameter.


2020 ◽  
Vol 1 (2) ◽  
pp. 171-179

Soil respiration is a major component of global carbon cycle. Therefore, it is crucial to understand the environmental controls on soil respiration for evaluating potential response of ecosystems to climate change. In a temperate deciduous forest (located in Northern-Hungary) we added or removed aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture, and soil temperature. Soil CO2 efflux was measured at each plot using soda-lime method. Temperature sensitivity of soil respiration (Q10) was monitored via measuring soil temperature on an hourly basis, while soil moisture was determined monthly. Soil respiration increased in control plots from the second year after implementing the treatment, but results showed fluctuations from one year to another. The effect of doubled litter was less significant than the effect of removal. Removed litter and root inputs caused substantial decrease in soil respiration. We found that temperature was more influential in the control of soil respiration than soil moisture. In plots with no litter Q10 varied in the largest interval. For treatment with doubled litter layer, temperature sensitivity of CO2 efflux did not change considerably. The effect of increasing soil temperature is more conspicuous to soil respiration in litter removal treatments since lack of litter causes greater irradiation. When exclusively leaf litter was considered, the effect of temperature on soil respiration was lower in treatments with added litter than with removed litter. Our results reveal that soil life is impacted by the absence of organic matter, rather than by an excess of organic matter. Results of CO2 emission from soils with different organic matter content can contribute to sustainable land use, considering the changed climatic factors caused by global climate change.


2020 ◽  
Vol 17 (3) ◽  
pp. 771-780 ◽  
Author(s):  
Stephanie C. Pennington ◽  
Nate G. McDowell ◽  
J. Patrick Megonigal ◽  
James C. Stegen ◽  
Ben Bond-Lamberty

Abstract. Soil respiration (Rs), the flow of CO2 from the soil surface to the atmosphere, is one of the largest carbon fluxes in the terrestrial biosphere. The spatial variability of Rs is both large and poorly understood, limiting our ability to robustly scale it in space. One factor in Rs spatial variability is the autotrophic contribution from plant roots, but it is uncertain how the presence of plants affects the magnitude and temperature sensitivity of Rs. This study used 1 year of Rs measurements to examine the effect of localized basal area on Rs in the growing and dormant seasons, as well as during moisture-limited times, in a temperate, coastal, deciduous forest in eastern Maryland, USA. In a linear mixed-effects model, tree basal area within a 5 m radius (BA5) exerted a significant positive effect on the temperature sensitivity of soil respiration. Soil moisture was the dominant control on Rs during the dry portions of the year, while soil moisture, temperature, and BA5 all exerted significant effects on Rs in wetter periods. Our results suggest that autotrophic respiration is more sensitive to temperature than heterotrophic respiration at these sites, although we did not measure these source fluxes directly, and that soil respiration is highly moisture sensitive, even in a record-rainfall year. The Rs flux magnitudes (0.46–15.0 µmol m−2 s−1) and variability (coefficient of variability 10 %–23 % across plots) observed in this study were comparable to values observed in similar forests. Six Rs observations would be required in order to estimate the mean across all study sites to within 50 %, and 518 would be required in order to estimate it to within 5 %, with 95 % confidence. A better understanding of the spatial interactions between plants and microbes, as well as the strength and speed of above- and belowground coupling, is necessary to link these processes with large-scale soil-to-atmosphere C fluxes.


2007 ◽  
Vol 4 (3) ◽  
pp. 2007-2025 ◽  
Author(s):  
A. A. Larionova ◽  
I. V. Yevdokimov ◽  
S. S. Bykhovets

Abstract. Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux by the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half- saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of the data obtained in the incubation experiments with forest and arable soils. Our data confirm the hypothesis and suggest that concentration of readily decomposable C substrate as glucose equivalent is an important factor controlling temperature sensitivity. The highest temperature sensitivity was observed when C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, explaining this phenomenon by changes in concentration of readily decomposable C substrate. It is worth noting that this pattern works regardless of the origin of C substrate: production by SOM decomposition, release into the soil by rhizodeposition, litter fall or drying-rewetting events.


2012 ◽  
Vol 610-613 ◽  
pp. 3217-3221
Author(s):  
Hao Ji ◽  
Xi Bin Dong

Low-quality stands in Greater Higgnan Mountains were transformed by clear-cuttings with different area of forest gaps, then larch were planted after induced transformations. The LI-8150 multi-channel automated soil CO2 flux system was used to measure CO2 flux on soil surface. Changes of different soil respiration rates and influence factors were analyzed after different transformations. The results indicated that the soil respiration rates were all raised after different transformations compared with no interfered control plots. After analyzing different transformations comprehensively, it showed that the soil respiration rate performed a negative correlation with the soil density significantly, while the correlation with soil organic matter and litter weight in little decomposed was positive (p﹤0.05). The largest Q10 with forest gap area of 625 m2 was 3.561. Influenced by soil respiration rate, soil underground with depth of 10cm showed the strongest temperature sensitivity. The smallest Q10 with forest gap area of 900 m2 was 2.312, and temperature sensitivity of soil was the weakest.


2015 ◽  
Vol 12 (20) ◽  
pp. 5981-5993 ◽  
Author(s):  
C. Gritsch ◽  
M. Zimmermann ◽  
S. Zechmeister-Boltenstern

Abstract. Soil respiration is one of the largest terrestrial fluxes of carbon dioxide (CO2) to the atmosphere. Hence, small changes in soil respiration rates could have large effects on atmospheric CO2. In order to assess CO2 emissions from diverse European soils with different land-use types and climate (soil moisture and temperature), we conducted a laboratory incubation experiment. Emission measurements of CO2 under controlled conditions were conducted using soil monoliths of nine sites from a European flux network (ÉCLAIRE). The sites are located all over Europe – from the United Kingdom in the west to Ukraine in the east, and from Italy in the south to Finland in the north – and can be separated according to four land-use types (forests, grasslands, arable lands and one peatland). Intact soil cores were incubated in the laboratory in a two-way factorial design, with temperature (5, 10, 15, 20 and 25 °C) and water-filled pore space (WFPS; 5, 20, 40, 60 and 80 %) as the independent variables, while CO2 flux was the response variable. The latter was measured with an automated laboratory incubation measurement system. Land use generally had a substantial influence on carbon dioxide fluxes, with the order of CO2 emission rates of the different land-use types being grassland > peatland > forest/arable land (P < 0.001). CO2 efflux responded strongly to varying temperature and moisture content with optimum moisture contents for CO2 emissions between 40 and 70 % WFPS and a positive relationship between CO2 emissions and temperature. The relationship between temperature and CO2 emissions could be well described by a Gaussian model. Q10 values ranged between 0.86 and 10.85 and were negatively related to temperature for most of the moisture contents and sites investigated. At higher temperatures the effect of water and temperature on Q10 was very low. In addition, under cold temperatures Q10 varied with moisture contents, indicating a stronger prospective effect of rain events in cold areas on temperature sensitivity. At both coniferous forest sites we found a strong increase in the temperature sensitivity at a moisture range between 20 and 40 % WFPS. We developed a new approach to calculate moisture sensitivity (MS) of CO2 efflux. MS was calculated as the slope of a polynomial function of second degree. Moisture sensitivities were highest under dry and wet conditions. In addition we found a positive relationship between MS of CO2 efflux and temperature for both arable lands.


2007 ◽  
Vol 4 (6) ◽  
pp. 1073-1081 ◽  
Author(s):  
A. A. Larionova ◽  
I. V. Yevdokimov ◽  
S. S. Bykhovets

Abstract. Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half-saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents) and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.


Author(s):  
Lin Yang ◽  
Qiuliang Zhang ◽  
Zhongtao Ma ◽  
Huijun Jin ◽  
Xiaoli Chang ◽  
...  

AbstractTemperature sensitivity of respiration of forest soils is important for its responses to climate warming and for the accurate assessment of soil carbon budget. The sensitivity of temperature (Ti) to soil respiration rate (Rs), and Q10 defined by e10(lnRs−lna)/Ti has been used extensively for indicating the sensitivity of soil respiration. The soil respiration under a larch (Larix gmelinii) forest in the northern Daxing’an Mountains, Northeast China was observed in situ from April to September, 2019 using the dynamic chamber method. Air temperatures (Tair), soil surface temperatures (T0cm), soil temperatures at depths of 5 and 10 cm (T5cm and T10cm, respectively), and soil-surface water vapor concentrations were monitored at the same time. The results show a significant monthly variability in soil respiration rate in the growing season (April–September). The Q10 at the surface and at depths of 5 and 10 cm was estimated at 5.6, 6.3, and 7.2, respectively. The Q10@10 cm over the period of surface soil thawing (Q10@10 cm, thaw = 36.89) were significantly higher than that of the growing season (Q10@10 cm, growth = 3.82). Furthermore, the Rs in the early stage of near-surface soil thawing and in the middle of the growing season is more sensitive to changes in soil temperatures. Soil temperature is thus the dominant factor for season variations in soil respiration, but rainfall is the main controller for short-term fluctuations in respiration. Thus, the higher sensitivity of soil respiration to temperature (Q10) is found in the middle part of the growing season. The monthly and seasonal Q10 values better reflect the responsiveness of soil respiration to changes in hydrometeorology and ground freeze-thaw processes. This study may help assess the stability of the soil carbon pool and strength of carbon fluxes in the larch forested permafrost regions in the northern Daxing’an Mountains.


2019 ◽  
Vol 135 ◽  
pp. 286-293 ◽  
Author(s):  
Petr Čapek ◽  
Robert Starke ◽  
Kirsten S. Hofmockel ◽  
Ben Bond-Lamberty ◽  
Nancy Hess

2015 ◽  
Vol 12 (6) ◽  
pp. 4433-4464 ◽  
Author(s):  
C. Gritsch ◽  
M. Zimmermann ◽  
S. Zechmeister-Boltenstern

Abstract. Soil respiration is one of the largest terrestrial fluxes of carbon dioxide (CO2) to the atmosphere. Hence, small changes in soil respiration rates could have large effects on atmospheric CO2. In order to assess CO2 emissions from diverse European soils under different land-use and climate (soil moisture and temperature) we conducted a laboratory incubation experiment. Emission measurements of carbon dioxide under controlled conditions were conducted using soil monoliths of nine sites from the ÉCLAIRE flux network. Sites are located all over Europe; from the UK in the west to the Ukraine in the east; Italy in the south to Finland in the north and can be separated according to four land-uses (forests, grasslands, arable lands and one peatland). Intact soil cores were incubated in the laboratory at the temperatures 5, 10, 15, 20, and 25 °C in a two factorial design of five soil moisture levels (5, 20, 40, 60, 80 (100)% water filled pore space, WFPS), before analysed for CO2 fluxes with an automated laboratory incubation measurement system. Land-use generally had a substantial influence on carbon dioxide fluxes, with the order of CO2 emission rates of the different land-uses being grassland > peatland > forest/arable land (P < 0.001). CO2 efflux responded strongly to varying temperature and moisture content with optimum moisture contents for CO2 emissions between 40–70% WFPS and a positive relationship between CO2 emissions and temperature. The relationship between temperature and CO2 emissions could be well described by a Gaussian model. Q10 values ranged between 0.86–10.85 and were negatively related to temperature for most of the moisture contents and sites investigated. At higher temperatures the effect of water and temperature on Q10 was very low. In addition under cold temperatures Q10 varied with moisture contents indicating a stronger prospective effect of rain events in cold areas on temperature sensitivity. We found at both coniferous forest sites a strong increase of the temperature sensitivity at a moisture range between 20–40% WFPS. In our study moisture sensitivity (MS) of CO2 efflux was calculated as the slope of a polynomial function of second degree. Moisture sensitivities were highest under dry and wet conditions. In addition we found a positive relationship between MS of CO2 efflux and temperature for both arable lands.


Sign in / Sign up

Export Citation Format

Share Document