scholarly journals Influence of different copper materials on biofilm control using chlorine and mechanical stress

2020 ◽  
Author(s):  
Inês B. Gomes ◽  
Lúcia Simões ◽  
Manuel Simões

<p>The selection of materials for plumbing application has potential implications on the chemical and microbiological quality of the delivered water. This work aims to evaluate the action of materials with different copper content (0, 57, 96 and 100%) on biofilm formation and control by chlorination and mechanical stress. A strain of <em>Stenotrophomonas maltophilia</em> isolated from drinking water was used as model microorganism and biofilms were developed in a rotating cylinder reactor (RCR) using realism-based shear stress conditions. Biofilms were characterized phenotypically and exposed to three control strategies: 10 mg/l of free chlorine for 10 min; an increased shear stress (equivalent to 1.5 m/s of fluid velocity); and the combination of both treatments. Biofilms formed on the copper materials had lower wet mass and produced significantly lower amounts of extracellular proteins than those formed on stainless steel (0% of copper content). Although, the effects of copper materials on biofilm cell density was not significant, these materials had important impact on the efficacy of chemical and/or mechanical treatments. Biofilms formed on 96 or 100% copper materials had lower content of culturable bacteria than that observed on stainless steel after exposure to chlorine or shear stress. The mechanical treatment used had no relevant effects in biofilm control. The combination of chemical and mechanical treatments only caused higher culturability reduction than chlorine in biofilms formed on 57% copper alloy. The number of viable cells present in bulk water after biofilm treatment with chlorine was lower when biofilms were formed on any of the copper surface. The overall results are of potential importance on the selection of materials for drinking water distribution systems, particularly for house and hospital plumbing systems to overcome the effects from chlorine decay. Copper alloys may have a positive public health impact by reducing the number of viable cells in the delivered water after chlorine exposure and improving the disinfection of DW systems. Moreover, the results demonstrate that residual chlorine and mechanical stress, two strategies conventionally used for disinfection of drinking water distribution systems, failed in <em>S. maltophilia</em> biofilm control.</p> <p><strong>Acknowledgements:</strong></p> <p>This work was the result of the projects: UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE - funded by national funds through the FCT/MCTES (PIDDAC); PTDC/BII-BTI/30219/2017 - POCI-01-0145-FEDER-030219; POCI-01-0145-FEDER-006939, funded by FEDER funds through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES; NORTE-01-0145-FEDER-000005 – LEPABE-2-ECO-INNOVATION, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).</p>

2020 ◽  
Vol 41 (S1) ◽  
pp. s255-s255
Author(s):  
Ayodele T. Adesoji ◽  
Adeniyi A. Ogunjobi

Background: Multidrug-resistant bacteria can lead to treatment failure, resulting in infectious diseases being transferred through nonpotable water. Aminoglycosides are an important class of antibiotics that are abused in Nigeria. Few studies have investigated aminoglycoside-modifying genes (AMGs) that are likely responsible for resistance in Nigeria bacteria isolates. Therefore, we aimed to characterize AMGs from isolates in drinking water distribution systems (DWDS) in southwestern Nigeria. Methods: Multidrug-resistant bacteria (n = 181) that had been previously characterized by 16S rDNA sequencing and that were positive for resistance to at least 1 aminoglycoside antibiotic were selected from 6 treated and untreated water distribution systems. Strains were PCR genotyped for 3 AMGs: aph(3)c, ant(3)b and aph(6)-1dd. Results: Of 181 MDR bacteria tested, 69 (38.12%) were positive for at least 1 of the AMGs. The most common was ant(3)c (27.6%), followed by aph(3")c (18.23%). Both aph(3)c and ant(3")b were found in 7.73% of tested isolates, ant(3)b was most commonly found in Alcaligenes spp (50%). Furthermore, aph(3")c was most commonly detected in Proteus spp (50%). Other genera positive for AMGs included Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoae, Proteus, Providencia, Psychrobacter, and Serratia. Conclusions: High occurrence of ant(3)c and aph(3)c among these bacteria call for urgent attention among public health workers because these genes can be easily disseminated to consumers if present on mobile genetic elements like plasmids, integrons, and transposons.Funding: NoneDisclosures: None


2017 ◽  
Vol 3 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Haibo Wang ◽  
Chun Hu ◽  
Lang Yin ◽  
Sujia Zhang ◽  
Lizhong Liu

There is a relationship between biochemical function and chemical composition of corrosion scales, and Fe3O4formation reduced iron release.


Sign in / Sign up

Export Citation Format

Share Document