scholarly journals Effects of melting ice sheets and orbital forcing on the early Holocene warming in the extratropical Northern Hemisphere

2016 ◽  
Vol 12 (5) ◽  
pp. 1119-1135 ◽  
Author(s):  
Yurui Zhang ◽  
Hans Renssen ◽  
Heikki Seppä

Abstract. The early Holocene is marked by the final transition from the last deglaciation to the relatively warm Holocene. Proxy-based temperature reconstructions suggest a Northern Hemisphere warming, but also indicate important regional differences. Model studies have analyzed the influence of diminishing ice sheets and other forcings on the climate system during the Holocene. The climate response to forcings before 9 kyr BP (referred to hereafter as kyr), however, remains not fully comprehended. We therefore studied, by employing the LOVECLIM climate model, how orbital and ice-sheet forcings contributed to climate change and to these regional differences during the earliest part of the Holocene (11.5–7 kyr). Our equilibrium experiment for 11.5 kyr suggests lower annual mean temperatures at the onset of the Holocene than in the preindustrial era with the exception of Alaska. The magnitude of this cool anomaly varied regionally, and these spatial patterns are broadly consistent with proxy-based reconstructions. Temperatures throughout the whole year in northern Canada and northwestern Europe for 11.5 kyr were 2–5 °C lower than those of the preindustrial era as the climate was strongly influenced by the cooling effect of the ice sheets, which was caused by enhanced surface albedo and ice-sheet orography. In contrast, temperatures in Alaska for all seasons for the same period were 0.5–3 °C higher than the control run, which were caused by a combination of orbital forcing and stronger southerly winds that advected warm air from the south in response to prevailing high air pressure over the Laurentide Ice Sheet (LIS). The transient experiments indicate a highly inhomogeneous early Holocene temperature warming over different regions. The climate in Alaska was constantly cooling over the whole Holocene, whereas there was an overall fast early Holocene warming in northern Canada by more than 1 °C kyr−1 as a consequence of progressive LIS decay. Comparisons of simulated temperatures with proxy records illustrate uncertainties related to the reconstruction of ice-sheet melting, and such a kind of comparison has the potential to constrain the uncertainties in ice-sheet reconstruction. Overall, our results demonstrate the variability of the climate during the early Holocene, both in terms of spatial patterns and temporal evolution.

2009 ◽  
Vol 5 (3) ◽  
pp. 329-345 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


1997 ◽  
Vol 25 ◽  
pp. 333-339 ◽  
Author(s):  
Philippe Huybrechts ◽  
Stephen T’siobbel

A quasi-three-dimensional (3-D) climate model (Sellers, 1983) was used to simulate the climate of the Last Glacial Maximum (LGM) in order to provide climatic input for the modelling of the Northern Hemisphere ice sheets. The climate model is basically a coarse-gridded general circulation (GCM) with simplified dynamics, and was subject to appropriate boundary conditions for ice-sheet elevation, atmospheric CO2concentration and orbital parameters. When compared with the present-daysimulation, the simulated climate at the Last Glacial Maximum is characterized by a global annual cooling of 3.5°C and a reduction in global annualprecipitation of 7.5%, which agrees well with results from other, more complex GCMs. Also the patterns of temperature change compare fairly with mostother GCM results, except for a smaller cooling over the North Atlantic and the larger cooling predicted for the summer rather than for the winter over Eurasia.The climate model is able to simulate changes in Northern Hemisphere tropospheric circulation, yielding enhanced westerlies in the vicinity of the Laurentide and Eurasian ice sheets. However, the simulated precipitation patterns are less convincing, and show a distinct mean precipitation increase over the Laurentide ice sheet. Nevertheless, when using the mean-monthly fields of LGM minus present-day anomalies of temperature and precipitation rate to drive a three-dimensional thermomechanical ice-sheet model, it was demonstrated that within realistic bounds of the ice-flow and mass-balance parameters, veryreasonable reconstructions of the Last Glacial Maximum ice sheets could be obtained.


2020 ◽  
Author(s):  
Kenji Izumi ◽  
Paul Paul Valdes ◽  
Ruza Ivanovic ◽  
Lauren Gregoire

<p>The Last Glacial Maximum (LGM; 21,000 yr before present) is a target period of the paleoclimate simulations in the Coupled Model Intercomparison Project Phase 6 – the Paleoclimate Modeling Intercomparison Project Phase 4 (CMIP6-PMIP4) because of abundant paleoenvironmental data in continental, ice, and marine indicators. The LGM was a period of low atmospheric trace gases when large ice sheets covered over North America and Scandinavia. Paleoclimate reconstructions and modeling studies suggest that the Northern Hemisphere climate differed from today.</p><p>In this study, we used the coupled atmosphere and ocean model HadCM3B-M1 in order to investigate the impacts of the main LGM boundary condition changes, in particular, the ICE-6G_C, GLAC-1D, and PMIP3 ice-sheet reconstructions following the PMIP4 protocol, on the mean state of the climate over the Northern Hemisphere. First, we check the surface albedo forcing and feedback with a simplified partial derivative method and assess the surface temperature changes and their composition using a simple surface energy balance equation. Then, we investigate how patterns of stationary waves, westerly jet precipitation over the Northern Hemisphere change in response to the LGM ice-sheet configuration. Finally, we implement a paleo data-model comparison for validation of the large-scale climate changes over the Northern Hemisphere at the LGM. The wintertime stationary waves have the largest amplitude and different responses among the experiments, while stationary waves in summer are weak and similar responses. The LGM simulation with the ICE-6G_C better captures features of the LGM climate, but compared to the reconstructions, the climate model tends to overestimate cooling in summer and underestimate cooling in winter and simulate wetter conditions over the Northern Hemisphere.  </p>


2015 ◽  
Vol 11 (6) ◽  
pp. 5345-5399 ◽  
Author(s):  
Y. Zhang ◽  
H. Renssen ◽  
H. Seppä

Abstract. The early Holocene is a critical period for climate change, as it marked the final transition from the last deglaciation to the relatively warm and stable Holocene. It is characterized by a warming trend that has been registered in numerous proxy records. This climatic warming was accompanied by major adjustments in different climate components, including the decaying of ice sheets in cryosphere, the perturbation of circulation in the ocean, the expansion of vegetation (over the high latitude) in biosphere. Previous studies have analyzed the influence of the demise of the ice sheets and other forcings on climate system. However, the climate response to the forcings together with the internal feedbacks before 9 ka remains not fully comprehended. In this study, we therefore disentangle how these forcings contributed to climate change during the earliest part of Holocene (11.5–7 ka) by employing the LOVECLIM climate model for both equilibrium and transient experiments. The results of our equilibrium experiments for 11.5 ka reveal that the annual mean temperature at the onset of the Holocene was lower than in the preindustrial era in the Northern extratropics, except in Alaska. The magnitude of this cool anomaly varies regionally as a response to varying climate forcings and diverse mechanisms. In eastern N America and NW Europe the temperatures throughout the whole year were 2–5 °C lower than in the preindustrial control, reaching the maximum cooling as here the climate was strongly influenced by the cooling effects of the ice sheets. This cooling of the ice-sheet surface was caused both by the enhanced surface albedo and by the orography of the ice sheets. For Siberia, a small deviation (−0.5–1.5 °C) in summer temperature and 0.5–1.5 °C cooler annual climate compared to the preindustrial run were caused by the counteraction of the high albedo associated with the tundra vegetation which was more southward extended at 11.5 ka than in the preindustrial period and the orbitally induced radiation anomalies. In the eastern part of the Arctic Ocean (over Barents Sea, Kara Sea and Laptev Sea), the annual mean temperature was 0.5–2 °C lower than at 0 ka, because the cooling effect of a reduced northward heat transport induced by the weakened ocean circulation overwhelmed the orbitally induced warming. The 0.5–3 °C cooler climate over the N Labrador Sea and N Atlantic Ocean was related to the reduced northward heat transport and sea-ice feedbacks initiated by the weakened ocean circulation. In contrast, in Alaska, temperatures in all seasons were 0.5–3 °C higher than the control run primarily due to the orbitally induced positive insolation anomaly and also to the enhanced southerly winds which advected warm air from the South as a response to the high air pressure over the Laurentide Ice Sheet. Our transient experiments indicate that the Holocene temperature evolution and the early Holocene warming also vary between different regions. In Alaska, the climate is constantly cooling over the whole Holocene, primarily following the decreasing insolation. In contrast, in N Canada, the overall warming during the early Holocene is faster than in other areas (up to 1.88 °C ka−1 in summer) as a consequence of the progressive decay of the LIS, and the warming lasted till about 7 ka when this deglaciation was completed. In NW Europe, the Arctic and Siberia, the overall warming rates are intermediate with about 0.3–0.7 °C ka−1 in most of seasons (with only exception in Arctic's winter). Overall, our results demonstrate the spatial variability of the climate during the early Holocene, both in terms of the temperature distribution and warming rates, as the response to varying dominant forcings and diverse mechanisms.


1997 ◽  
Vol 25 ◽  
pp. 333-339 ◽  
Author(s):  
Philippe Huybrechts ◽  
Stephen T’siobbel

A quasi-three-dimensional (3-D) climate model (Sellers, 1983) was used to simulate the climate of the Last Glacial Maximum (LGM) in order to provide climatic input for the modelling of the Northern Hemisphere ice sheets. The climate model is basically a coarse-gridded general circulation (GCM) with simplified dynamics, and was subject to appropriate boundary conditions for ice-sheet elevation, atmospheric CO2 concentration and orbital parameters. When compared with the present-daysimulation, the simulated climate at the Last Glacial Maximum is characterized by a global annual cooling of 3.5°C and a reduction in global annualprecipitation of 7.5%, which agrees well with results from other, more complex GCMs. Also the patterns of temperature change compare fairly with mostother GCM results, except for a smaller cooling over the North Atlantic and the larger cooling predicted for the summer rather than for the winter over Eurasia.The climate model is able to simulate changes in Northern Hemisphere tropospheric circulation, yielding enhanced westerlies in the vicinity of the Laurentide and Eurasian ice sheets. However, the simulated precipitation patterns are less convincing, and show a distinct mean precipitation increase over the Laurentide ice sheet. Nevertheless, when using the mean-monthly fields of LGM minus present-day anomalies of temperature and precipitation rate to drive a three-dimensional thermomechanical ice-sheet model, it was demonstrated that within realistic bounds of the ice-flow and mass-balance parameters, veryreasonable reconstructions of the Last Glacial Maximum ice sheets could be obtained.


2020 ◽  
Author(s):  
Paul Gierz ◽  
Lars Ackermann ◽  
Christian Rodehacke ◽  
Uta Krebs-Kanzow ◽  
Christian Stepanek ◽  
...  

<p>Interglacials during the Quaternary represent the youngest climate states in the paleoclimate record that are similar to potential warmer-than-present states during the Anthropocene. In particular, those periods with warmer reconstructed temperatures and/or higher sea levels provide insights into the mechanisms that may be at work now and in the future. To date, climate model simulations of Quaternary Interglacials have been restricted to Atmosphere-Biosphere-Ocean simulations, with static ice sheet geometries from glaciological, geological, and geophysical reconstructions. Simulations including fully interactive ice sheets have not been widely available. Here, we present the first simulations of the PMIP4 timeslices for the Holocene and the Last Interglacial (LIG) with a fully coupled multi-resolution climate/cryosphere model, the AWI-ESM. We compare the simulated snapshots for the Holocene and LIG to simulations to proxy reconstructions, and to runs without dynamic ice sheets to highlight the processes now represented by the improved model. Furthermore, we show various schemes implemented in our model system to represent the ice sheet mass balance, both from surface ablation as well as ocean interaction. We find that both the Holocene and Last Interglacial ice sheets contain a smaller volume of ice compared to present day, with relative sea level equivalent changes of -3% and -7%, respectively.</p>


2009 ◽  
Vol 5 (2) ◽  
pp. 1013-1053 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity fully coupled with a 3-dimensional thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


1998 ◽  
Vol 27 ◽  
pp. 169-176 ◽  
Author(s):  
R. Calov ◽  
I. Marsiat

We present simulations of the Northern Hemisphere land ice through the last glacial-interglacial cycle with a vertically integrated ice-sheet model and a three-dimensional thermomechanical ice-sheet model. Both models are coupled asynchronously to the zonally averaged Louvain-la-Neuve climate model, which includes simplified treatments of the atmosphere, ocean and sea ice. The two-dimensional vertically integrated ice-sheet model, which contains no thermomechanical coupling, was developed in spherical coordinates (Marsiat, 1994). The three-dimensional thermomechanical ice-sheet model was developed using the two-dimensional vertically integrated model as source. We compare results of the vertically integrated with those of the thermomechanical ice-sheet model. in the thermomechanical model the deformation properties of ice depend on the temperature within the ice and the enhancement factor; the latter is introduced to model, in a simplified approach, the different flow properties of Pleistocene and Holocene ice due to varying dust content. The computations with the thermomechanical model show that the growth and decay of the Northern Hemisphere ice sheets can be modelled with a common enhancement factor for all ice sheets. It is shown that there are model set-ups for the thermomechanical model yielding temporal developments of the total ice volume comparable to those of the vertically integrated model. Furthermore, we demonstrate that for the coupled climate/cryosphere system the total ice volume depends considerably on the enhancement factor.


2013 ◽  
Vol 9 (4) ◽  
pp. 1629-1643 ◽  
Author(s):  
M. Blaschek ◽  
H. Renssen

Abstract. The relatively warm early Holocene climate in the Nordic Seas, known as the Holocene thermal maximum (HTM), is often associated with an orbitally forced summer insolation maximum at 10 ka BP. The spatial and temporal response recorded in proxy data in the North Atlantic and the Nordic Seas reveals a complex interaction of mechanisms active in the HTM. Previous studies have investigated the impact of the Laurentide Ice Sheet (LIS), as a remnant from the previous glacial period, altering climate conditions with a continuous supply of melt water to the Labrador Sea and adjacent seas and with a downwind cooling effect from the remnant LIS. In our present work we extend this approach by investigating the impact of the Greenland Ice Sheet (GIS) on the early Holocene climate and the HTM. Reconstructions suggest melt rates of 13 mSv for 9 ka BP, which result in our model in an ocean surface cooling of up to 2 K near Greenland. Reconstructed summer SST gradients agree best with our simulation including GIS melt, confirming that the impact of the early Holocene GIS is crucial for understanding the HTM characteristics in the Nordic Seas area. This implies that modern and near-future GIS melt can be expected to play an active role in the climate system in the centuries to come.


2012 ◽  
Vol 6 (6) ◽  
pp. 4897-4938 ◽  
Author(s):  
S. Charbit ◽  
C. Dumas ◽  
M. Kageyama ◽  
D. M. Roche ◽  
C. Ritz

Abstract. Since the original formulation of the positive-degree-day (PDD) method, different PDD calibrations have been proposed in the literature in response to the increasing number of observations. Although these formulations provide a satisfactory description of the present-day Greenland geometry, they have not all been tested for paleo ice sheets. Using the climate-ice sheet model CLIMBER-GRISLI coupled with different PDD models, we evaluate how the parameterization of the ablation may affect the evolution of Northern Hemisphere ice sheets in the transient simulations of the last glacial cycle. Results from fully coupled simulations are compared to time-slice experiments carried out at different key periods of the last glacial period. We find large differences in the simulated ice sheets according to the chosen PDD model. These differences occur as soon as the onset of glaciation, therefore affecting the subsequent evolution of the ice system. To further investigate how the PDD method controls this evolution, special attention is given to the role of each PDD parameter. We show that glacial inception is critically dependent on the representation of the impact of the temperature variability from the daily to the inter-annual time scale, whose effect is modulated by the refreezing scheme. Finally, an additional set of sensitivity experiments has been carried out to assess the relative importance of melt processes with respect to initial ice sheet configuration in the construction and the evolution of past Northern Hemisphere ice sheets. Our analysis reveals that the impacts of the initial ice sheet condition may range from quite negligible to explaining about half of the LGM ice volume depending on the representation of stochastic temperature variations which remain the main driver of the evolution of the ice system.


Sign in / Sign up

Export Citation Format

Share Document