scholarly journals The Holocene thermal maximum in the Nordic Seas: the impact of Greenland Ice Sheet melt and other forcings in a coupled atmosphere–sea-ice–ocean model

2013 ◽  
Vol 9 (4) ◽  
pp. 1629-1643 ◽  
Author(s):  
M. Blaschek ◽  
H. Renssen

Abstract. The relatively warm early Holocene climate in the Nordic Seas, known as the Holocene thermal maximum (HTM), is often associated with an orbitally forced summer insolation maximum at 10 ka BP. The spatial and temporal response recorded in proxy data in the North Atlantic and the Nordic Seas reveals a complex interaction of mechanisms active in the HTM. Previous studies have investigated the impact of the Laurentide Ice Sheet (LIS), as a remnant from the previous glacial period, altering climate conditions with a continuous supply of melt water to the Labrador Sea and adjacent seas and with a downwind cooling effect from the remnant LIS. In our present work we extend this approach by investigating the impact of the Greenland Ice Sheet (GIS) on the early Holocene climate and the HTM. Reconstructions suggest melt rates of 13 mSv for 9 ka BP, which result in our model in an ocean surface cooling of up to 2 K near Greenland. Reconstructed summer SST gradients agree best with our simulation including GIS melt, confirming that the impact of the early Holocene GIS is crucial for understanding the HTM characteristics in the Nordic Seas area. This implies that modern and near-future GIS melt can be expected to play an active role in the climate system in the centuries to come.

2012 ◽  
Vol 8 (5) ◽  
pp. 5263-5291 ◽  
Author(s):  
M. Blaschek ◽  
H. Renssen

Abstract. The relatively warm early Holocene climate in the Nordic Seas, known as the Holocene Thermal Maximum (HTM), is often associated with an orbitally forced summer insolation maximum at 10 ka BP. The spatial and temporal response recorded in proxy data in the North Atlantic and the Nordic Seas reveal a complex interaction of mechanisms active in the HTM. Previous studies have investigated the impact of the Laurentide Ice Sheet (LIS), as a remnant from a previous glacial period, altering climate conditions with a continuous supply of melt water to the Labrador Sea and adjacent seas and with a downwind cooling effect from the remnant LIS. In our present work we extend this approach by investigating the impact of the Greenland Ice Sheet (GIS) on the early Holocene climate and the HTM. Reconstructions suggest melt rates of 13 mSv for 9 ka BP, which result in our model in a ocean surface cooling of up to 2 K near Greenland. Reconstructed summer SST gradients agree best with our simulation including GIS melt, confirming that the impact of early Holocene GIS is crucial for understanding the HTM characteristics in the Nordic Seas area. This implies that the modern and near-future GIS melt can be expected to play an active role in the climate system in the centuries to come.


2019 ◽  
Author(s):  
Jacob Downs ◽  
Jesse Johnson ◽  
Jason Briner ◽  
Nicolás Young ◽  
Alia Lesnek ◽  
...  

Abstract. We investigate changing precipitation patterns in the Kangerlussuaq region of west central Greenland during the Holocene thermal maximum, using a new chronology of ice sheet terminus position through the Holocene and a novel inverse modeling approach based on the unscented transform (UT). The UT is applied to estimate changes in annual precipitation in order to reduce the misfit between modeled and observed terminus positions. We demonstrate the effectiveness of the UT for time-dependent data assimilation, highlighting its low computational cost and trivial parallel implementation. Our results indicate that Holocene warming coincided with elevated precipitation, without which modeled retreat in the Kangerlussuaq region is more rapid than suggested by observations. Less conclusive is if high temperatures during the HTM were specifically associated with a transient increase in precipitation, as the results depend on the assumed temperature history. The importance of precipitation in controlling ice sheet extent during the Holocene underscores the importance of Arctic sea ice loss and changing precipitation patterns on the future stability of the GrIS.


2020 ◽  
Vol 14 (3) ◽  
pp. 1121-1137
Author(s):  
Jacob Downs ◽  
Jesse Johnson ◽  
Jason Briner ◽  
Nicolás Young ◽  
Alia Lesnek ◽  
...  

Abstract. We investigate changing precipitation patterns in the Kangerlussuaq region of western central Greenland during the Holocene thermal maximum (HTM), using a new chronology of ice sheet terminus position through the Holocene and a novel inverse modeling approach based on the unscented transform (UT). The UT is applied to estimate changes in annual precipitation in order to reduce the misfit between modeled and observed terminus positions. We demonstrate the effectiveness of the UT for time-dependent data assimilation, highlighting its low computational cost and trivial parallel implementation. Our results indicate that Holocene warming coincided with elevated precipitation, without which modeled retreat in the Kangerlussuaq region is more rapid than suggested by observations. Less conclusive is whether high temperatures during the HTM were specifically associated with a transient increase in precipitation, as the results depend on the assumed temperature history. Our results highlight the important role that changing precipitation patterns had in controlling ice sheet extent during the Holocene.


Geology ◽  
2015 ◽  
Vol 43 (4) ◽  
pp. 291-294 ◽  
Author(s):  
Nicolaj K. Larsen ◽  
Kurt H. Kjær ◽  
Benoit Lecavalier ◽  
Anders A. Bjørk ◽  
Sune Colding ◽  
...  

2016 ◽  
Vol 12 (6) ◽  
pp. 1313-1338 ◽  
Author(s):  
Madlene Pfeiffer ◽  
Gerrit Lohmann

Abstract. During the Last Interglacial (LIG, ∼130–115 kiloyears (kyr) before present (BP)), the northern high latitudes were characterized by higher temperatures than those of the late Holocene and a lower Greenland Ice Sheet (GIS). However, the impact of a reduced GIS on the global climate has not yet been well constrained. In this study, we quantify the contribution of the GIS to LIG warmth by performing various sensitivity studies based on equilibrium simulations, employing the Community Earth System Models (COSMOS), with a focus on height and extent of the GIS. We present the first study on the effects of a reduction in the GIS on the surface temperature (TS) on a global scale and separate the contribution of astronomical forcing and changes in GIS to LIG warmth. The strong Northern Hemisphere summer warming of approximately 2 °C (with respect to pre-industrial) is mainly caused by increased summer insolation. Reducing the height by  ∼ 1300 m and the extent of the GIS does not have a strong influence during summer, leading to an additional global warming of only +0.24 °C compared to the purely insolation-driven LIG. The effect of a reduction in the GIS is, however, strongest during local winter, with up to +5 °C regional warming and with an increase in global average temperature of +0.48 °C. In order to evaluate the performance of our LIG simulations, we additionally compare the simulated TS anomalies with marine and terrestrial proxy-based LIG temperature anomalies derived from three different proxy data compilations. Our model results are in good agreement with proxy records with respect to the warming pattern but underestimate the magnitude of temperature change when compared to reconstructions, suggesting a potential misinterpretation of the proxy records or deficits in our model. However, we are able to partly reduce the mismatch between model and data by additionally taking into account the potential seasonal bias of the proxy record and/or the uncertainties in the dating of the proxy records for the LIG thermal maximum. The seasonal bias and the uncertainty of the timing are estimated from new transient model simulations covering the whole LIG. The model–data comparison improves for proxies that represent annual mean temperatures when the GIS is reduced and when we take the local thermal maximum during the LIG (130–120 kyr BP) into account. For proxy data that represent summer temperatures, changes in the GIS are of minor importance for sea surface temperatures. However, the annual mean and summer temperature change over Greenland in the reduced GIS simulations seems to be overestimated as compared to the local ice core data, which could be related to the interpretation of the recorder system and/or the assumptions of GIS reduction. Thus, the question regarding the real size of the GIS during the LIG has yet to be answered.


2018 ◽  
Vol 64 (245) ◽  
pp. 477-488 ◽  
Author(s):  
LISBETH T. NIELSEN ◽  
GUðFINNA AÐALGEIRSDÓTTIR ◽  
VASILEIOS GKINIS ◽  
ROMAN NUTERMAN ◽  
CHRISTINE S. HVIDBERG

ABSTRACTThe Holocene climatic optimum was a period 8–5 kyr ago when annual mean surface temperatures in Greenland were 2–3°C warmer than present-day values. However, this warming left little imprint on commonly used temperature proxies often used to derive the climate forcing for simulations of the past evolution of the Greenland ice sheet. In this study, we investigate the evolution of the Greenland ice sheet through the Holocene when forced by different proxy-derived temperature histories from ice core records, focusing on the effect of sustained higher surface temperatures during the early Holocene. We find that the ice sheet retreats to a minimum volume of ~0.15–1.2 m sea-level equivalent smaller than present in the early or mid-Holocene when forcing an ice-sheet model with temperature reconstructions that contain a climatic optimum, and that the ice sheet has continued to recover from this minimum up to present day. Reconstructions without a warm climatic optimum in the early Holocene result in smaller ice losses continuing throughout the last 10 kyr. For all the simulated ice-sheet histories, the ice sheet is approaching a steady state at the end of the 20th century.


Sign in / Sign up

Export Citation Format

Share Document