scholarly journals Coupled climate-carbon cycle simulation of the Last Glacial Maximum atmospheric CO<sub>2</sub> decrease using a large ensemble of modern plausible parameter sets

Author(s):  
Krista M. S. Kemppinen ◽  
Philip B. Holden ◽  
Neil R. Edwards ◽  
Andy Ridgwell ◽  
Andrew D. Friend

Abstract. During the Last Glacial Maximum (LGM), atmospheric CO2 was around 90 ppmv lower than during the preindustrial period. Despite years of research, however, the exact mechanisms leading to the glacial atmospheric CO2 drop are still not entirely understood. Here, a large (471-member) ensemble of GENIE-1 simulations is used to simulate the equilibrium LGM minus preindustrial atmospheric CO2 concentration difference (ΔCO2). The ensemble has previously been weakly constrained with modern observations and was designed to allow for a wide range of large-scale feedback response strengths. Out of the 471 simulations, 315 complete without evidence of numerical instability, and with a ΔCO2 that centres around −20 ppmv. Roughly a quarter of the 315 runs predict a more significant atmospheric CO2 drop, between ~ 30 and 90 ppmv. This range captures the error in the model's process representations and the impact of processes which may be important for ΔCO2 but are not included in the model. These runs jointly constitute what we refer to as the plausible glacial atmospheric CO2 change-filtered (PGACF) ensemble. Our analyses suggest that decreasing LGM atmospheric CO2 tends to be associated with decreasing SSTs, increasing sea ice area, a weakening of the Atlantic Meridional Overturning Circulation (AMOC), a strengthening of the Antarctic Bottom Water (AABW) cell in the Atlantic Ocean, a decreasing ocean biological productivity, an increasing CaCO3 weathering flux, an increasing terrestrial biosphere carbon inventory and an increasing deep-sea CaCO3 burial flux. The increases in terrestrial biosphere carbon are predominantly due to our choice to preserve rather than destroy carbon in ice sheet areas. However, the ensemble soil respiration also tends to decrease significantly more than net photosynthesis, resulting in relatively large increases in non-burial carbon. In a majority of simulations, the terrestrial biosphere carbon increases are also accompanied by decreases in ocean carbon and increases in lithospheric carbon. In total, however, we find there are 5 different ways of achieving a plausible ΔCO2 in terms of the sign of individual carbon reservoir changes. The PGACF ensemble members also predict both positive and negative changes in global particulate organic carbon (POC) flux, AMOC and AABW cell strengths, and global CaCO3 burial flux. Comparison of the PGACF ensemble results against observations suggests that the simulated LGM physical climate and biogeochemical changes are mostly of the right sign and magnitude or within the range of observational error, except for the change in global deep-sea CaCO3 burial flux – which tends to be overestimated. We note that changing CaCO3 weathering flux is a variable parameter (included to account for variation in both the CaCO3 weathering rate and the un-modelled CaCO3 shallow water deposition flux), and this parameter is strongly associated with changes in global CaCO3 burial rate. The increasing terrestrial carbon inventory is also likely to have contributed to the LGM increase in deep-sea CaCO3 burial flux via the process of carbonate compensation. However, we do not yet rule out either of these processes as causes of ΔCO2 since missing processes such as Si fertilisation, Si leakage and the effect of decreasing SSTs on CaCO3 production may have introduced a high LGM global CaCO3 burial rate bias. Including these processes would, all else held constant, lower the rain ratio seen by the sediments and result in a decrease in atmospheric CO2 and increase in ocean carbon. Despite not modelling Δ14C(atm (DIC)) and δ13C(atm (DIC)), we also highlight some ways in which our results may potentially be reconciled with these records.

1998 ◽  
Vol 13 (3) ◽  
pp. 298-310 ◽  
Author(s):  
Nina R. Catubig ◽  
D. E. Archer ◽  
Roger Francois ◽  
Peter deMenocal ◽  
Will Howard ◽  
...  

2009 ◽  
Vol 5 (4) ◽  
pp. 695-706 ◽  
Author(s):  
A. Tagliabue ◽  
L. Bopp ◽  
D. M. Roche ◽  
N. Bouttes ◽  
J.-C. Dutay ◽  
...  

Abstract. We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we propose that most of the change in atmospheric CO2 was due to such factors. However, the lesser role for circulation means that when all plausible factors are accounted for, most of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.


2018 ◽  
Author(s):  
Aurich Jeltsch-Thömmes ◽  
Gianna Battaglia ◽  
Olivier Cartapanis ◽  
Samuel L. Jaccard ◽  
Fortunat Joos

Abstract. Atmospheric CO2 increased by about 90 ppm across the transition from the Last Glacial Maximum (LGM) to the end of the preindustrial (PI) period. The contribution of changes in land carbon stocks to this increase remains uncertain. Estimates of the PI-LGM difference in land biosphere carbon inventory (∆land) range from −400 to &amp;plus;1,500 GtC, based on upscaling of scarce paleo soil carbon or pollen data. A perhaps more reliable approach infers ∆land from reconstructions of the stable carbon isotope ratio in the ocean and atmosphere assuming isotopic mass balance with recent studies yielding ∆land values of about 300–400 GtC. Surprisingly, however, earlier studies considered a mass balance for the ocean–atmosphere–land biosphere system only. Thereby, these studies neglect carbon exchange with sediments, weathering-burial flux imbalances, and the influence of the deglacial reorganization on the isotopic budgets. We show this neglect to significantly bias low deglacial ∆land in simulations using the Bern3D Earth System Model of Intermediate Complexity v.2.0s. We constrain ∆land to ∼ 850 GtC (median estimate; 450 to 1250 GtC 1σ range) by using reconstructed changes in atmospheric δ13C, marine δ13C, deep Pacific carbonate ion concentration, and atmospheric CO2 as observational targets in a Monte Carlo ensemble with half a million members. Sensitivities of the target variables to changes in individual deglacial carbon cycle processes are established from factorial simulations over the past 21,000 years with the Bern3D model. These are used in the Monte Carlo ensemble and provide forcing–response relationships for future model–model and model–data comparisons. Uncertainties in the estimate of ∆land remain considerable due to model and proxy data uncertainties. Yet, it is likely that ∆land is larger than 450 GtC and highly unlikely that the carbon inventory in the land biosphere was larger for the LGM than during the recent preindustrial period.


2009 ◽  
Vol 5 (3) ◽  
pp. 1463-1491 ◽  
Author(s):  
A. Tagliabue ◽  
L. Bopp ◽  
D. M. Roche ◽  
N. Bouttes ◽  
J.-C. Dutay ◽  
...  

Abstract. We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we can attribute over 90% of the change in atmospheric CO2 to such factors. The lesser role for circulation means that when all plausible factors are accounted for, over half of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.


2005 ◽  
Vol 1 (1) ◽  
pp. 1-7 ◽  
Author(s):  
A. Jahn ◽  
M. Claussen ◽  
A. Ganopolski ◽  
V. Brovkin

Abstract. The importance of the biogeophysical atmosphere-vegetation feedback in comparison with the radiative effect of lower atmospheric CO2 concentrations and the presence of ice sheets at the last glacial maximum (LGM) is investigated with the climate system model CLIMBER-2. Equilibrium experiments reveal that most of the global cooling at the LGM (-5.1°C) relative to (natural) present-day conditions is caused by the introduction of ice sheets into the model (-3.0°C), followed by the effect of lower atmospheric CO2 levels at the LGM (-1.5°C), while a synergy between these two factors appears to be very small on global average. The biogeophysical effects of changes in vegetation cover are found to cool the global LGM climate by 0.6°C. The latter are most pronounced in the northern high latitudes, where the taiga-tundra feedback causes annually averaged temperature changes of up to -2.0°C, while the radiative effect of lower atmospheric CO2 in this region only produces a cooling of 1.5°C. Hence, in this region, the temperature changes caused by vegetation dynamics at the LGM exceed the cooling due to lower atmospheric CO2 concentrations.


2011 ◽  
Vol 5 (1) ◽  
pp. 74-79 ◽  
Author(s):  
P. Ciais ◽  
A. Tagliabue ◽  
M. Cuntz ◽  
L. Bopp ◽  
M. Scholze ◽  
...  

2013 ◽  
Vol 9 (4) ◽  
pp. 1571-1587 ◽  
Author(s):  
R. O'ishi ◽  
A. Abe-Ouchi

Abstract. When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.


Sign in / Sign up

Export Citation Format

Share Document