scholarly journals Preparation of thin-film composite membranes supported with electrospun nanofibers for desalination by forward osmosis

2020 ◽  
Vol 13 (2) ◽  
pp. 51-57
Author(s):  
Mustafa Al-Furaiji ◽  
Mohammed Kadhom ◽  
Khairi Kalash ◽  
Basma Waisi ◽  
Noor Albayati

Abstract. The forward osmosis (FO) process has been considered to be a viable option for water desalination in comparison to the traditional processes like reverse osmosis, regarding energy consumption and economical operation. In this work, a polyacrylonitrile (PAN) nanofiber support layer was prepared using the electrospinning process as a modern method. Then, an interfacial polymerization reaction between m-phenylenediamine (MPD) and trimesoyl chloride (TMC) was carried out to generate a polyamide selective thin-film composite (TFC) membrane on the support layer. The TFC membrane was tested in FO mode (feed solution facing the active layer) using the standard methodology and compared to a commercially available cellulose triacetate membrane (CTA). The synthesized membrane showed a high performance in terms of water flux (16 Lm −2 h−1) but traded the salt rejection (4 gm−2 h−1) compared with the commercial CTA membrane (water flux = 13 Lm−2 h−1 and salt rejection = 3 gm−2 h−1) at no applied pressure and room temperature. Scanning electron microscopy (SEM), contact angle, mechanical properties, porosity, and performance characterizations were conducted to examine the membrane.

Membranes ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 70 ◽  
Author(s):  
Ralph Gonzales ◽  
Myoung Park ◽  
Leonard Tijing ◽  
Dong Han ◽  
Sherub Phuntsho ◽  
...  

Electrospun nanofiber-supported thin film composite membranes are among the most promising membranes for seawater desalination via forward osmosis. In this study, a high-performance electrospun polyvinylidenefluoride (PVDF) nanofiber-supported thin film composite (TFC) membrane was successfully fabricated after molecular layer-by-layer polyelectrolyte deposition. Negatively-charged electrospun polyacrylic acid (PAA) nanofibers were deposited on electrospun PVDF nanofibers to form a support layer consisted of PVDF and PAA nanofibers. This resulted to a more hydrophilic support compared to the plain PVDF nanofiber support. The PVDF-PAA nanofiber support then underwent a layer-by-layer deposition of polyethylenimine (PEI) and PAA to form a polyelectrolyte layer on the nanofiber surface prior to interfacial polymerization, which forms the selective polyamide layer of TFC membranes. The resultant PVDF-LbL TFC membrane exhibited enhanced hydrophilicity and porosity, without sacrificing mechanical strength. As a result, it showed high pure water permeability and low structural parameter values of 4.12 L m−2 h−1 bar−1 and 221 µm, respectively, significantly better compared to commercial FO membrane. Layer-by-layer deposition of polyelectrolyte is therefore a useful and practical modification method for fabrication of high performance nanofiber-supported TFC membrane.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 260 ◽  
Author(s):  
Yuanyuan Tang ◽  
Shan Li ◽  
Jia Xu ◽  
Congjie Gao

This study reported a series of thin film composite (TFC) membranes with single-walled nanotubes (SWCNTs) interlayers for the forward osmosis (FO) application. Pure SWCNTs with ultrahigh length-to-diameter ratio and without any functional group were applied to form an interconnect network interlayer via strong π-π interactions. Compared to the TFC membrane without SWCNTs interlayer, our TFC membrane with optimal SWCNTs interlayer exhibited more than three times the water permeability (A) of 3.3 L m−2h−1bar−1 in RO mode with 500 mg L−1 NaCl as feed solution and nearly three-fold higher FO water flux of 62.8 L m−2 h−1 in FO mode with the deionized water as feed solution and 1 M NaCl as draw solution. Meanwhile, the TFC membrane with SWCNTs interlayer exhibited significantly reduced membrane structure parameters (S) to immensely mitigate the effect of internal concentration polarization (ICP) in support layer with micro-sized pores in favor of higher water flux. It showed that the pure SWCNTs interlayer could be an effective strategy to apply in FO membranes.


Author(s):  
Ralph Rolly Gonzales ◽  
Myoung Jun Park ◽  
Leonard Tijing ◽  
Dong Suk Han ◽  
Sherub Phuntsho ◽  
...  

Electrospun nanofiber-supported thin film composite membranes are among the most promising membranes for seawater desalination via forward osmosis. In this study, a high-performance electrospun polyvinylidenefluoride (PVDF) nanofiber-supported TFC membrane was successfully fabricated after molecular layer-by-layer polyelectrolyte deposition. Negatively-charged electrospun polyacrylic acid (PAA) nanofibers were deposited on electrospun PVDF nanofibers to form a support layer consisted of PVDF and PAA nanofibers. This resulted to a more hydrophilic support compared to the plain PVDF nanofiber support. The PVDF-PAA nanofiber support then underwent a layer-by-layer deposition of polyethylenimine (PEI) and PAA to form a polyelectrolyte layer on the nanofiber surface prior to interfacial polymerization, which forms the selective polyamide layer of TFC membranes. The resultant PVDF-LbL TFC membrane exhibited enhanced hydrophilicity and porosity, without sacrificing mechanical strength. As a result, it showed high pure water permeability and low structural parameter values of 4.12 Lm−2h−1bar−1 and 221 µm, respectively, significantly better compared to commercial FO membrane. Layer-by-layer deposition of polyelectrolyte is therefore a useful and practical modification method for fabrication of high performance nanofiber-supported TFC membrane.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Yang Zhao ◽  
Xuesong Li ◽  
Jing Wei ◽  
Jaume Torres ◽  
Anthony G. Fane ◽  
...  

The aquaporin-based biomimetic thin-film composite membrane (ABM-TFC) has demonstrated superior separation performance and achieved successful commercialization. The larger-scale production of the ABM membrane requires an appropriate balance between the performance and manufacturing cost. This study has systematically investigated the effects of proteoliposome concentration, protein-to-lipid ratio, as well as the additive on the separation performance of ABM for the purpose of finding the optimal preparation conditions for the ABM from the perspective of industrial production. Although increasing the proteoliposome concentration or protein-to-lipid ratio within a certain range could significantly enhance the water permeability of ABMs by increasing the loading of aquaporins in the selective layer, the enhancement effect was marginal or even compromised beyond an optimal point. Alternatively, adding cholesterol in the proteoliposome could further enhance the water flux of the ABM membrane, with minor effects on the salt rejection. The optimized ABM not only achieved a nearly doubled water flux with unchanged salt rejection compared to the control, but also demonstrated satisfactory filtration stability within a wide range of operation temperatures. This study provides a practical strategy for the optimization of ABM-TFC membranes to fit within the scheme of industrial-scale production.


2020 ◽  
Author(s):  
Mustafa Al-Furaiji ◽  
Mohammed Kadhom ◽  
Khairi Kalash ◽  
Basma Waisi ◽  
Noor Albayati

Abstract. Forward osmosis (FO) process has been considered as a viable option for water desalination in comparison to the traditional processes like reverse osmosis regarding the energy consumption and economical operation. In this work, polyacrylonitrile (PAN) nanofiber support layer was prepared using electrospinning process as a modern method. Then, an interfacial polymerization reaction between m-phenylenediamine (MPD) and trimesoyl chloride (TMC) was carried out to generate a polyamide selective thin film composite (TFC) membrane on the support layer. The TFC membrane was tested in FO mode (feed solution facing the active layer) using standard methodology and compared to a commercially available cellulose triacetate membrane (CTA). The synthesized membrane showed a high performance in terms of water flux (16 L m−2 h−1) but traded the salt rejection (4 g m−2 h−1) comparing with the commercially CTA membrane (water flux = 13 L m−2 h−1 and salt rejection = 3 g m−2 h−1) at no applied pressure and room temperature. Scanning electron microscopy (SEM), contact angle, mechanical properties, porosity, and performance characterizations were conducted to examine the membrane.


2019 ◽  
Vol 7 (2) ◽  
pp. 632-638 ◽  
Author(s):  
Shenghua Zhou ◽  
Zhu Xiong ◽  
Fu Liu ◽  
Haibo Lin ◽  
Jianqiang Wang ◽  
...  

Janus porous membrane exhibits unprecedented osmotic water flux and near-complete reverse salt rejection far beyond thin-film composite membranes.


Sign in / Sign up

Export Citation Format

Share Document