scholarly journals Preparation of TFC Membranes Supported with Elelctrospun Nanofibers for Desalination by Forward Osmosis

2020 ◽  
Author(s):  
Mustafa Al-Furaiji ◽  
Mohammed Kadhom ◽  
Khairi Kalash ◽  
Basma Waisi ◽  
Noor Albayati

Abstract. Forward osmosis (FO) process has been considered as a viable option for water desalination in comparison to the traditional processes like reverse osmosis regarding the energy consumption and economical operation. In this work, polyacrylonitrile (PAN) nanofiber support layer was prepared using electrospinning process as a modern method. Then, an interfacial polymerization reaction between m-phenylenediamine (MPD) and trimesoyl chloride (TMC) was carried out to generate a polyamide selective thin film composite (TFC) membrane on the support layer. The TFC membrane was tested in FO mode (feed solution facing the active layer) using standard methodology and compared to a commercially available cellulose triacetate membrane (CTA). The synthesized membrane showed a high performance in terms of water flux (16 L m−2 h−1) but traded the salt rejection (4 g m−2 h−1) comparing with the commercially CTA membrane (water flux = 13 L m−2 h−1 and salt rejection = 3 g m−2 h−1) at no applied pressure and room temperature. Scanning electron microscopy (SEM), contact angle, mechanical properties, porosity, and performance characterizations were conducted to examine the membrane.

2020 ◽  
Vol 13 (2) ◽  
pp. 51-57
Author(s):  
Mustafa Al-Furaiji ◽  
Mohammed Kadhom ◽  
Khairi Kalash ◽  
Basma Waisi ◽  
Noor Albayati

Abstract. The forward osmosis (FO) process has been considered to be a viable option for water desalination in comparison to the traditional processes like reverse osmosis, regarding energy consumption and economical operation. In this work, a polyacrylonitrile (PAN) nanofiber support layer was prepared using the electrospinning process as a modern method. Then, an interfacial polymerization reaction between m-phenylenediamine (MPD) and trimesoyl chloride (TMC) was carried out to generate a polyamide selective thin-film composite (TFC) membrane on the support layer. The TFC membrane was tested in FO mode (feed solution facing the active layer) using the standard methodology and compared to a commercially available cellulose triacetate membrane (CTA). The synthesized membrane showed a high performance in terms of water flux (16 Lm −2 h−1) but traded the salt rejection (4 gm−2 h−1) compared with the commercial CTA membrane (water flux = 13 Lm−2 h−1 and salt rejection = 3 gm−2 h−1) at no applied pressure and room temperature. Scanning electron microscopy (SEM), contact angle, mechanical properties, porosity, and performance characterizations were conducted to examine the membrane.


2016 ◽  
Vol 78 (12) ◽  
Author(s):  
C. Y. Chong ◽  
G. S. Lai ◽  
W. J. Lau ◽  
N. Yusof ◽  
P. S. Goh ◽  
...  

The membrane technology is still considered a costly method to produce potable water. In view of this, RO membrane with enhanced water permeability without trade-off in salt rejection is desirable as it could further reduce the cost for water desalination. In this study, thin film nanocomposite (TFN) membranes containing 0.05 or 0.10 w/v% hydrophilic nanofillers in polyamide layer were synthesized via interfacial polymerization of piperazine and trimesoyl chloride monomers. The resultant TFN membranes were characterized and compared with a control thin film composite (TFC) membrane. Results from the filtration experiments showed that TFN membranes exhibited higher water permeability, salt rejection and fouling resistance compared to that of the TFC membrane. Excessive amount of nanofillers incorporated in the membrane PA layer however negatively affected the cross-linking in the polymer matrix, thus deteriorating the membrane salt rejection. TFN membrane containing 0.05 w/v% of nanofillers showed better performances than the TFC membrane, recording a pure water flux of 11.2 L/m2∙h, and salt rejection of 95.4%, 97.3% and 97.5% against NaCl, Na2SO4 and MgSO4, respectively. 


Author(s):  
Haleema Saleem ◽  
Syed Javaid Zaidi

Reverse osmosis (RO) is considered as the most widely utilized technique worldwide for water treatment. However, the commercial thin-film composite (TFC) membranes, which are normally made of polyamide (PA) through interfacial polymerization (IP), still experience certain major issues in performance and fabrication. The spin assisted layer-by-layer (SA-LbL) technique was established for overcoming some drawbacks with commercially available PA membranes. Also, recent investigations have recognized the nanoparticle inclusion into the selective layer as a powerful technique for improving the membrane efficiency. Hence, two different methodologies are presented here to improve the membrane performance, i.e., (1) SA-LbL technique to fabricate TFC membrane by the deposition of alternate ultrathin layers of different polyelectrolytes on polysulfone (PSF) commercial ultrafiltration membrane and (2) the nanoclay incorporation into the membranes during IP process to develop TFC membrane. Two types of nanoclays, cloisite (CS)-15A and montmorillonite (MNT), were incorporated to enhance the separation efficiency. This SA-LbL is an innovative method for the RO membrane manufacture, and has not been described earlier to the best of our knowledge. In addition, this work validated for the first time, the efficiency of the two nanoclays at the PA selective layer in the RO membrane. The membrane performance was evaluated using sodium chloride solution in a cross-flow permeation-testing cell for salt rejection and water flux. The results show significant improvement in water flux and salt rejection. The permeation test of 120 bilayers of poly (allylaminehydrochloride)/poly (vinylsulfate) on PSF substrate showed water flux of 37 L/ (m2.h) and salt rejection of 53%, for a 2000-ppm salt solution feed. The highest water flux of 40 L/m2.h with 80% salt rejection, relative to the control membrane was obtained for the membranes containing nanoclays at 25oC temperature, 40.0 bar pressure and 2000 ppm feed concentration. Thus, our study demonstrated that these TFC membranes are promising, and these novel fabrication techniques are great tool to manufacture the RO membrane.


2021 ◽  
Author(s):  
Mohamed Bassiouny ◽  
Peter Nasr ◽  
Hani Sewilam

Abstract This research project aims at investigating the performance of hydroponic nutrient solutions as draw solutions for desalination using the fertilizer drawn forward osmosis (FDFO) process. Six different lettuce and leafy greens hydroponic nutrient stock solutions were prepared according to the literature and used in this study and tested on a bench-scale forward osmosis unit as draw solutions for the process. The feed solution for the process was De-Ionized water mixed with NaCl in different concentrations, to represent different salinities of brackish groundwater. The draw efficiency of each solution was measured based on water flux, specific reverse solute flux, water recovery, and salt rejection. It was concluded that of the six tested nutrient solutions, the “Resh Florida, California” solution is the recommended solution to be used as draw solution for fertilizer drawn forward osmosis, due to its high performance in terms of water recovery (15.75%), flux (11 l/m2/h), salt rejection (92%) and SRSF (highest recorded SRSF for a specific ion (SO4 2−) was 7.3 g/l), as well as its low cost, relative to the other highly performing draw solution “Chekli” ($1.07/l vs. $3.73/l).


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1253 ◽  
Author(s):  
Quanling Xie ◽  
Shishen Zhang ◽  
Hanjun Ma ◽  
Wenyao Shao ◽  
Xiao Gong ◽  
...  

In order to develop a high-performance thin-film nanocomposite (TFN) nanofiltration (NF) membrane, the functionalized graphene-based nanomaterial (GO-HBE-COOH) was synthesized by combining two-dimensional graphene oxide (GO) with a three-dimensional hyperbranched polymer, which was used as the novel nanofiller and successfully embedded into the polypiperazine-amide (PPA) active layers on polysulfone (PSU) substrates via interfacial polymerization (IP) process. The resultant NF membranes were characterized using ATR-FTIR, SEM, and AFM, while their performance was evaluated in terms of water flux, salt rejection, antifouling ability, and chlorine resistance. The influence of GO-HBE-COOH concentration on the morphologies, properties, and performance of TFN NF membranes was investigated. With the addition of 60 ppm GO-HBE-COOH, the TFN-GHC-60 NF membrane exhibited the optimal water flux without a sacrifice of the salt rejection. It was found that the introduction of GO-HBE-COOH nanosheets favored the formation of a thinner and smoother nanocomposite active layer with an enhanced hydrophilicity and negative charge. As a result, TFN NF membranes demonstrated a superior permeaselectivity, antifouling ability, and chlorine resistance over the conventional PPA thin-film composite (TFC) membranes.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1415
Author(s):  
Biqin Wu ◽  
Shuhao Wang ◽  
Jian Wang ◽  
Xiaoxiao Song ◽  
Yong Zhou ◽  
...  

The advantages of thin film nanocomposite reverse osmosis (TFN-RO) membranes have been demonstrated by numerous studies within the last decade. This study proposes a facile and novel method to tune the microscale and nanoscale structures, which has good potential to fabricate high-performance TFN-RO membranes. This method involves the addition of alkyl capped silica nanoparticles (alkyl-silica NPs) into the organic phase during interfacial polymerization (IP). We discovered for the first time that the high concentration alkyl-silica NPs in organic solvent isopar-G can limit the diffusion of MPD molecules at the interface, therefore shaping the intrinsic thickness and microstructures of the PA layer. Moreover, the alkyl group modification greatly reduces the NPs agglomeration and increases the compatibility between the NPs and the PA matrix. We further demonstrate that the doping of alkyl-silica NPs impacts the performance of the TFN-RO membrane by affecting intrinsic thickness, higher surface area, hydrophobic plugging effect, and higher surface charge by a series of characterization. At brackish water desalination conditions (2000 ppm NaCl, 1.55 MPa), the optimal brackish water flux was 55.3 L/m2∙h, and the rejection was maintained at 99.6%, or even exceeded this baseline. At seawater desalination conditions (32,000 ppm NaCl, 5.5 MPa), the optimized seawater flux reached 67.7 L/m2∙h, and the rejection was sustained at 99.4%. Moreover, the boron rejection was elevated by 11%, which benefits from a hydrophobic plugging effect of the alkyl groups.


Author(s):  
Yinghua Li ◽  
Wenhe Deng ◽  
Haibo Li ◽  
Fei Su ◽  
Xin Huang ◽  
...  

Abstract The Forward osmosis (FO) membrane exhibits great performance degradation when contacting with chlorine solutions. The damage of chlorine to membrane material will reduce the lifetime of membrane will seriously reduce the life of membrane and increase the cost of membrane treatment technology. Here, we prepared a chlorine-stable membranes by a covalent modification method with cyclohexylamine. The cyclohexylamine observably changed the surface morphology, the roughness (arithmetic average) of the membrane decreased from 22 to 17.2 nm. The addition of cyclohexylamine produced a denser sacrificial layer of short chain polyamide, which made modified membranes significantly possess better chlorine resistance with slightly declined water flux. The water flux of the optimal modified membrane was 10.78 Lm−2 h−1, only 13% less than that of the pristine membrane. Importantly, after 20,000 ppm·h chlorine exposure, the membrane with 1.5 wt% cyclohexylamine had a salt rejection of 77.2% and showed 26.0% lower water flux than pristine TFC (thin film composite) membrane in FO mode. Notably, the grafting membranes could maintain a high performance under acidic chlorination conditions. The membrane with best performance had a salt rejection of 81.6%, that exhibited 24.4% higher salt rejection than pristine membrane with 20,000 ppm·h chlorine exposure at a pH of 4. The cyclohexylamine endowed the FO membrane better chlorine resistance, making it attractive for the development of chlorine-resistant membrane for the environmental and desalination process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasamin Bide ◽  
Marzieh Arab Fashapoyeh ◽  
Soheila Shokrollahzadeh

AbstractForward osmosis (FO) process has been extensively considered as a potential technology that could minimize the problems of traditional water desalination processes. Finding an appropriate osmotic agent is an important concern in the FO process. For the first time, a nonionic surfactant-based draw solution was introduced using self-assemblies of Tween 80 and choline chloride. The addition of choline chloride to Tween 80 led to micelles formation with an average diameter of 11.03 nm. The 1H NMR spectra exhibited that all groups of Tween 80 were interacted with choline chloride by hydrogen bond and Van der Waals’ force. The influence of adding choline chloride to Tween 80 and the micellization on its osmotic activity was investigated. Despite the less activity of single components, the average water flux of 14.29 L m‒2 h‒1 was obtained using 0.15 M of Tween 80-choline chloride self-assembly as draw solution in the FO process with DI water feed solution. Moreover, various concentrations of NaCl aqueous solutions were examined as feed solution. This report proposed a possible preparation of nonionic surfactant-based draw solutions using choline chloride additive with enhanced osmotic activities that can establish an innovative field of study in water desalination by the FO process.


2018 ◽  
Vol 80 (3-2) ◽  
Author(s):  
Ngan T. B. Dang ◽  
Liza B. Patacsil ◽  
Aileen H. Orbecido ◽  
Ramon Christian P. Eusebio ◽  
Arnel B. Beltran

Water resources are very important to sustain life. However, these resources have been subjected to stress due to population growth, economic and industrial growth, pollution and climate change. With these, the recovery of water from sources such as wastewater, dirty water, floodwater and seawater is a sustainable alternative. The potential of recovering water from these sources could be done by utilizing forward osmosis, a membrane process that exploits the natural osmotic pressure gradient between solutions which requires low energy operation. This study evaluated the potential of forward osmosis (FO) composite membranes fabricated from bacterial cellulose (BC) and modified with sodium alginate. The membranes were evaluated for water flux and salt rejection. The effect of alginate concentrations and impregnation temperatures were evaluated using 0.6 M sodium chloride solution as feed and 2 M glucose solution as the draw solution. The membranes were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Contact Angle Meter (CAM). The use of sodium alginate in BC membrane showed a thicker membrane (38.3 μm to 67.6 μm), denser structure (shown in the SEM images), and more hydrophilic (contact angle ranges from 28.39° to 32.97°) compared to the pristine BC membrane (thickness = 12.8 μm and contact angle = 66.13°). Furthermore, the alginate modification lowered the water flux of the BC membrane from 9.283 L/m2-h (LMH) to value ranging from 2.314 to 4.797 LMH but the improvement in salt rejection was prominent (up to 98.57%).


2019 ◽  
Vol 22 (3) ◽  
pp. 85-92 ◽  
Author(s):  
Aulia Rahma ◽  
Muthia Elma ◽  
Mahmud Mahmud ◽  
Chairul Irawan ◽  
Amalia Enggar Pratiwi ◽  
...  

The high number of natural organic matter contain in wetland water may cause its water has brown color and not consumable. In other hand, intrusion of sea water through wetland aquifer create water become saline, notably on hot season. Coagulation is effective method to applied for removing of natural organic matter. However, it could not be used for salinity removal. Hence combination of coagulation and pervaporation process is attractive method to removing both of natural organic matter and conductivity of wetland saline water. The objective of this works is to investigate optimum coagulant doses for removing organic matter by coagulation process as pretreatment and to analysis performance of coagulation-pervaporation silica-pectin membrane for removing of organic matter and conductivity of wetland saline water. Coagulation process in this work carried out under varied aluminum sulfate dose 10-60 mg.L-1. Silica-pectin membrane was used for pervaporation process at feed temperature ~25 °C (room temperature). Optimum condition of pretreatment coagulation set as alum dose at 30 mg.L-1 with maximum removal efficiency 81,8 % (UV254) and 40 % (conductivity). In other hand, combining of coagulation-pervaporation silica-pectin membrane shows both of UV254 and salt rejection extremely good instead without pretreatment coagulation of 86,8 % and 99,9 % for UV254 and salt rejection respectively. Moreover, water flux of silica-pectin membrane pervaporation with coagulation pretreatment shown higher 17,7 % over water flux of wetland saline water without pretreatment coagulation. Combining of coagulation and pervaporation silica-pectin membrane is effective to removing both of organic matter and salinity of wetland saline water at room temperature.


Sign in / Sign up

Export Citation Format

Share Document