Hisparc cosmic ray detector’s response to heavy rain

Author(s):  
Alexander P. J. van Deursen ◽  
David Fokkema ◽  
Kasper van Dam ◽  
Bob van Eijk

<p>Cosmic ray particles have extreme energies, 10<sup>16</sup> eV/nucleon and up. Upon arrival at the higher atmosphere and collisions with the gas molecules there, the cosmic ray particles convert into an cascade of different secondary particles that finally arrive at soil level in the form of an extensive air shower (EAS): high-energy gamma’s, electrons and muons. In the HIgh School Project on Astrophysics Research with Cosmics (Hisparc, www.hisparc.nl) about 100 EAS detector stations are distributed over the Netherlands and several neighboring countries. These stations are mostly placed on the roof of secondary schools, where they have been built by pupils to attract them towards STEM studies.</p><p>Each station consists of two or four detectors with 0.5 m<sup>2</sup> plastic scintillator plates to record the passage of the EAS. At coincidence, the scintillator signals are individually recorded, accurately timed with GPS. All data are sent to and collected at the NIKHEF institute (www.nikhef.nl) and made available (open-access) for further analysis by pupils and scientists.</p><p>The sensitivity of the detectors is commonly adjusted such that each detector records a few hundred hits per second. The number of coincidences within 1.5 μs is then about 1 in 3 seconds, in part due to an actual EAS, in part due to random local radioactive processes.</p><p>During intense rainfall of a particular summer storm several two-detector systems recorded an increase in the coincidence frequency of up to a factor of 7. When comparing different stations we could follow the associated storm front moving northwards over NL. Within the coincidence interval of 1.5 μs the increased individual signals of both detectors were evenly distributed. Actual EAS signals tend to be synchronous to within 100 ns. We therefor attribute the increase to random signals. As possible source we suggest gamma radiation due to radon daughters in the atmosphere that are washed out by the rain and accumulate on the roof close to the detectors. The delay between rain and signal increase is noted and in accordance with the washing process time.</p>

1986 ◽  
Vol 6 (3) ◽  
pp. 335-338 ◽  
Author(s):  
D. Ciampa ◽  
R. W. Clay ◽  
C. L. Corani ◽  
P. G. Edwards ◽  
J. R. Patterson

AbstractThe Buckland Park air shower array is being developed particularly for use as an ultra-high-energy gamma ray astronomy telescope. The properties of this instrument are described with an emphasis on improvements being made to its angular resolution. Some early data are presented to illustrate the way in which the data obtained will be used.


2011 ◽  
Vol 20 (10) ◽  
pp. 2013-2018
Author(s):  
◽  
C. VIGORITO

The ARGO-YBJ experiment is an Extensive Air Shower (EAS) array which combines high altitude location and full coverage active area in order to reach low energy threshold at a level of few hundred of GeV. The large field of view (≈ 2 sr ) and the high duty cycle (≥ 90%) allow the continuous monitoring of the sky searching for unknown sources and unpredictable events, such as flares in blazar emissions and high energy Gamma-Ray Bursts (GRBs). In this paper I will briefly report on the detector performance and on some preliminary results achieved in γ-ray astronomy.


2021 ◽  
Vol 11 (3) ◽  
pp. 1185
Author(s):  
Michał Karbowiak ◽  
Tadeusz Wibig ◽  
David Alvarez Castillo ◽  
Dmitriy Beznosko ◽  
Alan R. Duffy ◽  
...  

The Cosmic-Ray Extremely Distributed Observatory (CREDO) was established to detect and study ultra high-energy cosmic ray particles. In addition to making use of traditional methods for finding rare and extended cosmic ray events such as professional-grade Extensive Air Shower (EAS) arrays, as well as educational ‘class-room’ detectors, CREDO also makes use of cameras in smartphones as particle detectors. Beyond the primary scientific goal of the CREDO project, to detect Cosmic Ray Ensembles, is the equally important educational goal of the project. To use smartphones for EAS detection, it is necessary to demonstrate that they are capable of effectively registering relativistic charged particles. In this article, we show that the events recorded in the CREDO project database are indeed tracing incoherent cosmic ray muons. The specific observed distribution of zenith angle of charged particle direction corresponds to that expected for muons. It is difficult, if not impossible, to imagine different mechanisms leading to such a distribution, and we believe it clearly demonstrates the suitability of smartphone-based detectors in supporting the more traditional cosmic ray detectors.


2019 ◽  
Vol 208 ◽  
pp. 14006
Author(s):  
Zhe Li ◽  
Songzhan Chen ◽  
Huihai He ◽  
Cong Li ◽  
Hongkui Lv ◽  
...  

The Large High Altitude Air Shower Observatory (LHAASO) is a new hybrid array for very high energy gamma ray astronomy and cosmic ray physics. The KM2A array, one of the main parts of LHAASO, covers an area of 1.3 km2 to observe gamma rays above 10 TeV up to 1 PeV for many sources. A prototype with 1% the size of the whole KM2A has been in stable operation for more than two years. A Monte Carlo simulation program named G4KM2A was developed; based on this work, the trigger rate, hit multiplicity, angular and core reconstruction are compared with KM2A prototype data. Finally, the moon shadow with -6.5 significance was obtained. The G4KM2A simulation results are consistent with KM2A prototype data and can be used for the whole KM2A array in future.


1984 ◽  
Vol 5 (4) ◽  
pp. 586-589 ◽  
Author(s):  
R. J. Protheroe ◽  
R. W. Clay

Recently, a new branch of astronomy has emerged following the detection of ultra-high energy (UHE) γ-ray emission from Cygnus X-3 by Samorski and Stamm (1983). This discovery was made using the extensive air shower (EAS) array of the University of Kiel, Germany. Such arrays are designed to detect EAS, the cascades of secondary particles (mainly electrons and protons), which are generated in the atmosphere by the interaction of cosmic ray nuclei of energy greater than ˜ 1015 eV. These arrays are also sensitive to EAS initiated by primary γ-rays and, depending on their design, have angular resolutions as good as the SAS-II and COS-B γ-ray telescopes which operated at ˜ 100 MeV energies. At present, there is no effective way to veto proton or nucleus-initiated EAS and so one must look for a significant excess of EAS from within a cone of resolution centred on a suspected source direction.


2021 ◽  
Vol 2105 (1) ◽  
pp. 012018
Author(s):  
S Nonis ◽  
A Leisos ◽  
A Tsirigotis ◽  
G Bourlis ◽  
K Papageorgiou ◽  
...  

Abstract The Astroneu cosmic ray telescope is a distributed hybrid array consisting of both scintillator counters and RF antenna detectors used for the detection of extensive air showers (EAS). The array is deployed at the Hellenic Open University campus, on the outskirts of the urban area of Patras in Greece. In the present development phase, the Astroneu telescope includes two stations consisting of 3 scintillation detectors modules (SDM) and one RF antenna while a third station includes 3 particle detectors and 4 RF antennas (3SDM-4RF). In each station, the RF-detectors are operating receiving a common trigger upon a 3-fold coincidence between the particle detectors of the station. In this study we present recent results from the 3SDM-4RF autonomous station related to the estimation of the direction of the incoming cosmic air shower using only the timing information from the 4 RF detectors. The directions of the reconstructed showers using the RF timing are in agreement with the corresponding results using the SDMs timing as well as with the simulation predictions. This verifies that the RF signal emitted from EAS originating form Ultra High Energy Cosmic Rays (UHECR), can be detected even in areas with strong electromagnetic background.


2019 ◽  
Vol 208 ◽  
pp. 05004
Author(s):  
Y. Itow ◽  
K. Masuda ◽  
H. Menjo ◽  
Y. Muraki ◽  
K. Ohashi ◽  
...  

The Large Hadron Collider forward and the Relativistic Heavy Ion Collider forward experiments measured forward particles produced in high-energy hadron collisions at the LHC and RHIC. Using compact calorimeters neutral particles produced in pseudorapidities η >8.4 and η >6.0 are observed by the respective experiments. Because the collision energies ranging from 0.51 TeV to 13 TeV correspond to the cosmic-ray equivalent energies of 1014 to 1017 eV, the measurements are important to understand the hadronic interaction relevant to extensive air shower measurements. This paper reviews recent results of LHCf and initial performance of RHICf that took data in the 2017 RHIC operation.


2005 ◽  
Vol 20 (29) ◽  
pp. 6814-6816
Author(s):  
A. GERANIOS ◽  
E. FOKITIS ◽  
S. MALTEZOS ◽  
K. PATRINOS ◽  
A. DIMOPOULOS

Using the AIRES code, we have generated a large number of Extensive Air Showers corresponding to Ultra high energy cosmic ray gammas, protons and iron nuclei with energy range 1015 – 1022 eV. These simulations clearly show the different atmospheric depths of the Extensive Air Shower maxima in this energy range.


Sign in / Sign up

Export Citation Format

Share Document