Ecological effects of sudden drainage of large karst lakes in the Lacandon Maya region, southern Mexico

Author(s):  
Liseth Perez ◽  

<p>Water levels in Lakes Metzabok and Tzibaná, two large karst lakes in the Lacandon Forest of southern Mexico, declined dramatically within a two-week period in July 2019. Lake Metzabok (0.83 km<sup>2</sup>; z<sub>max</sub> = 25 m) dried completely, whereas in Lake Tzibaná (1.24 km<sup>2</sup>; z<sub>max</sub> = 70 m) it fell by ~30 m. Analysis of satellite images in Lake Metzabok suggested a combined reduction in surface area of ~0.86 km<sup>2</sup> and water volume loss of ~11.7 million m<sup>3</sup>. The sudden loss of such a large volume of water had negative impacts on local Lacandon Maya inhabitants, and profound ecological and environmental effects, in that it caused biodiversity loss.</p><p>We combined limnological and paleolimnological analyses to evaluate the ecological effects of the sudden loss of water from Lakes Metzabok and Tzibaná. We collected and analyzed remnant waters, surface sediments and short sediment cores from what remained of the water bodies to evaluate whether evidence for such drainage events is preserved in lake sediments. <em>In situ</em> water-column measurements yielded values similar to those from the previous six years when the lakes were filled, suggesting that evaporation was not the process responsible for lake level lowering, but rather that the lakes drained through fractures in the underlying karst bedrock. We collected phytoplankton and zooplankton samples from the remnant waters and found abundant diatoms, green algae, testate amoebae, crustaceans (copepods, cladocerans, ostracodes), insects (chironomids, trichopterans), collembolans, rotifers, tardigrades and nematodes. Environmental conditions in such small remnant ponds are probably stressful and unstable, but because many fish, the main predators in these ecosystems, did not survive the desiccation event, the aquatic environment is ideal for survival or recolonization by many invertebrate groups. Understanding the dynamics of this modern scenario with low lake levels is key for making paleolimnological inferences that use these aquatic bioindicators. We also investigated the commencing transition from an aquatic to a terrestrial habitat in Lake Metzabok. Abundant spiders colonized cracks in the dry sediment. Small, deep holes in surface mud were probably created by aquatic organisms when water levels decreased rapidly. Some cracks held rain water and were inhabited by tadpoles of the Gulf Coast toad (<em>Incilius valliceps</em>). The first plants to colonize the exposed lake beds belonged to the families Poaceae (grasses), Amaranthaceae (amaranths/chenopods) and Fabaceae (legumes), among others.</p><p>The sediment record from Lakes Metzabok and Tzibaná as well as testimonies of local Lacandon Maya inhabitants suggest that similar lake level lowering events occurred in the past. The hydrology of karst lakes is complex and unpredictable because multiple geological and hydrological factors control the water balance. The cause of this recent lake level lowering event remains unknown, but may be revealed by interdisciplinary studies of the limnology, paleolimnology, structural geology, geophysics, hydrology, geochemistry, genomics and geodesy of lakes and rivers in the region, as well as traditional environmental knowledge of the Lacandon Maya.</p>

2020 ◽  
Author(s):  
Matthias Bücker ◽  
Adrián Flores Orozco ◽  
Jakob Gallistl ◽  
Matthias Steiner ◽  
Lukas Aigner ◽  
...  

Abstract. The present geophysical study was motivated by the need to determine suitable coring locations for paleolimnological studies in two karst lakes (Metzabok and Tzibaná) of the Lacandon Forest in Chiapas, southern Mexico. We used seismic and transient electromagnetic methods to map the sediment thickness below the lake floor. When lakes were filled in March 2018, we collected seismic data with a sub-bottom profiler (SBP) and transient electromagnetic (TEM) data with a floating single-loop configuration. The latter aimed at assessing the TEM method as an alternative to seismic methods for the investigation of lake sediments and geology. After the first campaign, water levels of both studied lakes dropped dramatically by July 2019, leaving Lake Metzabok (maximum depth ~ 25 m) dry and Lake Tzibaná (~ 70 m) with a water level decreased by approx. 30 m. After the sudden drainage of the lakes, we complemented water-borne measurements by a survey carried out on the exposed lake floor in October 2019, when lake levels were still low. During this second campaign, we collected time-domain induced polarization (TDIP), and seismic refraction tomography (SRT) data on the desiccated bed of Lake Metzabok and some dry parts of Lake Tzibaná. By comparing the various data sets, we find that (i) SBP and TDIP phase images consistently resolve the thickness of the fine-grained lacustrine sediments covering the lake floor, (ii) TEM and TDIP resistivity images consistently detect the upper limit of the limestone bedrock and the geometry of fluvial deposits of a river delta, and (iii) TDIP and SRT images suggest the existence of a layer that separates the lacustrine sediments from the limestone bedrock and consists of collapse debris mixed with lacustrine sediments. While our results do not imply that resistivity-based methods could generally replace seismic reflection surveys for lake-bottom reconnaissance, they clearly show that TEM and TDIP surveys can provide important complementary information and resolve additional geological units or bedrock heterogeneities.


Solid Earth ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 439-461
Author(s):  
Matthias Bücker ◽  
Adrián Flores Orozco ◽  
Jakob Gallistl ◽  
Matthias Steiner ◽  
Lukas Aigner ◽  
...  

Abstract. Karst water resources play an important role in drinking water supply but are highly vulnerable to even slight changes in climate. Thus, solid and spatially dense geological information is needed to model the response of karst hydrological systems to such changes. Additionally, environmental information archived in lake sediments can be used to understand past climate effects on karst water systems. In the present study, we carry out a multi-methodological geophysical survey to investigate the geological situation and sedimentary infill of two karst lakes (Metzabok and Tzibaná) of the Lacandon Forest in Chiapas, southern Mexico. Both lakes present large seasonal lake-level fluctuations and experienced an unusually sudden and strong lake-level decline in the first half of 2019, leaving Lake Metzabok (maximum depth ∼25 m) completely dry and Lake Tzibaná (depth ∼70 m) with a water level decreased by approx. 15 m. Before this event, during a lake-level high stand in March 2018, we collected water-borne seismic data with a sub-bottom profiler (SBP) and transient electromagnetic (TEM) data with a newly developed floating single-loop configuration. In October 2019, after the sudden drainage event, we took advantage of this unique situation and carried out complementary measurements directly on the exposed lake floor of Lakes Metzabok and Tzibaná. During this second campaign, we collected time-domain induced polarization (TDIP) and seismic refraction tomography (SRT) data. By integrating the multi-methodological data set, we (1) identify 5–6 m thick, likely undisturbed sediment sequences on the bottom of both lakes, which are suitable for future paleoenvironmental drilling campaigns, (2) develop a comprehensive geological model implying a strong interconnectivity between surface water and karst aquifer, and (3) evaluate the potential of the applied geophysical approach for the reconnaissance of the geological situation of karst lakes. This methodological evaluation reveals that under the given circumstances, (i) SBP and TDIP phase images consistently resolve the thickness of the fine-grained lacustrine sediments covering the lake floor, (ii) TEM and TDIP resistivity images consistently detect the upper limit of the limestone bedrock and the geometry of fluvial deposits of a river delta, and (iii) TDIP and SRT images suggest the existence of a layer that separates the lacustrine sediments from the limestone bedrock and consists of collapse debris mixed with lacustrine sediments. Our results show that the combination of seismic methods, which are most widely used for lake-bottom reconnaissance, with resistivity-based methods such as TEM and TDIP can significantly improve the interpretation by resolving geological units or bedrock heterogeneities, which are not visible from seismic data. Only the use of complementary methods provides sufficient information to develop comprehensive geological models of such complex karst environments


2020 ◽  
Author(s):  
Matthias Bücker ◽  
Liseth Pérez ◽  
Adrián Flores Orozco ◽  
Jakob Gallistl ◽  
Matthias Steiner ◽  
...  

<p>The karst lakes of the sparsely-populated Lacandon Forest in Chiapas, southern Mexico, and their associated sediment infill are attracting increasing attention as high-resolution and continuous environmental and climate archives. To evaluate the information stored in the sediments, paleolimnologists retrieve sediment cores and analyze multiple biological and non-biological indicators. Our geophysical measurements presented here were motivated by the need to determine coring locations providing continuous sediments records from a total of four lakes of the Lacandon Forest. Therefore, we mapped the sediment thickness on the lake floor by applying seismic, electrical, and electromagnetic methods. The measurements were carried out with floating devices – and, after the sudden drainage of two of the studied lakes, complemented by measurements on the exposed lake floor.</p><p>During a first campaign in March 2018 when lakes were filled, we collected seismic data with a sub-bottom profiler (SBP). Furthermore, we collected transient electromagnetic (TEM) data with a floating measuring device to investigate the potential of the method for the determination of sediment thicknesses as an alternative to seismic methods. After the lake-level maximum that coincided with the first campaign, the water levels of two of the studied lakes dropped dramatically by July 2019, leaving lake Metzabok (maximum depth ~15 m) dry and lake Tzibaná (~70 m) with a water level decreased by approx. 30 m. In October 2019, when lake levels were still low, we conducted a second survey covering the dry lake floor of lake Metzabok and some dry parts of lake Tzibaná. During this second campaign, we collected electrical resistivity tomography (ERT), induced polarization (IP), and seismic refraction tomography (SRT) data along selected lines of the 2018 survey.</p><p>Our 2018 results from the water-borne survey show that sediment thickness estimates from seismic (SBP) and electrical (TEM) data agree well for water depths up to 20 m and sediment thicknesses ranging from 2 m to 10 m. The 2019 data collected on the dry lake floor confirms the findings of the first campaign and – due to the smaller distance between measuring devices and target – results in a more detailed picture of sediments and the underlying limestone bedrock.</p>


2011 ◽  
Vol 75 (3) ◽  
pp. 430-437 ◽  
Author(s):  
Liisa Nevalainen ◽  
Kaarina Sarmaja-Korjonen ◽  
Tomi P. Luoto

AbstractThe usability of subfossil Cladocera assemblages in reconstructing long-term changes in lake level was examined by testing the relationship between Cladocera-based planktonic/littoral (P/L) ratio and water-level inference model in a surface-sediment dataset and in a 2000-yr sediment record in Finland. The relationships between measured and inferred water levels and P/L ratios were significant in the dataset, implying that littoral taxa are primarily deposited in shallow littoral areas, while planktonic cladocerans accumulate abundantly mainly in deepwater locations. The 2000-yr water-level reconstructions based on the water-level inference model and P/L ratio corresponded closely with each other and with a previously available midge-inferred water-level reconstruction from the same core, showing a period of lower water level around AD 300–1000 and suggesting that the methods are valid for paleolimnological and -climatological use.


2020 ◽  
Vol 12 (17) ◽  
pp. 2835
Author(s):  
Karina Nielsen ◽  
Ole Baltazar Andersen ◽  
Heidi Ranndal

Satellite altimetry is an important contributor for measuring the water level of continental water bodies. The technique has been applied for almost three decades. In this period the data quality has increased and the applications have evolved from the study of a few large lakes and rivers, to near global applications at various scales. Products from current satellite altimetry missions should be validated to continuously improve the measurements. Sentinel-3A has been operating since 2016 and is the first mission operating in synthetic aperture radar (SAR) mode globally. Here we evaluate its performance in capturing lake level variations based on a physical and an empirical retracker provided in the official level 2 product. The validation is performed for more than 100 lakes in the United States and Canada where the altimetry based water levels are compared with in situ data. As validation measures we consider the root mean squared error, the Pearson correlation, and the percentage of outliers. For the US sites the median of the RMSE value is 25 cm and 19 cm and the median of the Pearson correlations are 0.86 and 0.93 for the physical and empirical retracker, respectively. The percentage of outliers (median) is 11% for both retrackers. The validations measures are slightly poorer for the Canadian sites; the median RMSE is approximately 5 cm larger, the Pearson correlation 0.1 lower, and the percentage of outliers 5% larger. The poorer performance for the Canadian sites is mainly related to the presence of lake ice in the winter period where the surface elevations are not able to map the surface correctly. The validation measures improve considerably when evaluated for summer data only. For both areas we show that the reconstruction of the water level variations based on the empirical retracker is significantly better compared to that of the physical retracker in terms of the RMSE and the Pearson correlation.


2015 ◽  
Vol 112 (51) ◽  
pp. 15568-15573 ◽  
Author(s):  
Robert P. Lyons ◽  
Christopher A. Scholz ◽  
Andrew S. Cohen ◽  
John W. King ◽  
Erik T. Brown ◽  
...  

The transport of moisture in the tropics is a critical process for the global energy budget and on geologic timescales, has markedly influenced continental landscapes, migratory pathways, and biological evolution. Here we present a continuous, first-of-its-kind 1.3-My record of continental hydroclimate and lake-level variability derived from drill core data from Lake Malawi, East Africa (9–15° S). Over the Quaternary, we observe dramatic shifts in effective moisture, resulting in large-scale changes in one of the world’s largest lakes and most diverse freshwater ecosystems. Results show evidence for 24 lake level drops of more than 200 m during the Late Quaternary, including 15 lowstands when water levels were more than 400 m lower than modern. A dramatic shift is observed at the Mid-Pleistocene Transition (MPT), consistent with far-field climate forcing, which separates vastly different hydroclimate regimes before and after ∼800,000 years ago. Before 800 ka, lake levels were lower, indicating a climate drier than today, and water levels changed frequently. Following the MPT high-amplitude lake level variations dominate the record. From 800 to 100 ka, a deep, often overfilled lake occupied the basin, indicating a wetter climate, but these highstands were interrupted by prolonged intervals of extreme drought. Periods of high lake level are observed during times of high eccentricity. The extreme hydroclimate variability exerted a profound influence on the Lake Malawi endemic cichlid fish species flock; the geographically extensive habitat reconfiguration provided novel ecological opportunities, enabling new populations to differentiate rapidly to distinct species.


2014 ◽  
Vol 18 (5) ◽  
pp. 2007-2020 ◽  
Author(s):  
F. Baup ◽  
F. Frappart ◽  
J. Maubant

Abstract. This study presents an approach to determining the volume of water in small lakes (<100 ha) by combining satellite altimetry data and high-resolution (HR) images. In spite of the strong interest in monitoring surface water resources on a small scale using radar altimetry and satellite imagery, no information is available about the limits of the remote-sensing technologies for small lakes mainly used for irrigation purposes. The lake being studied is located in the south-west of France and is only used for agricultural irrigation purposes. The altimetry satellite data are provided by an RA-2 sensor onboard Envisat, and the high-resolution images (<10 m) are obtained from optical (Formosat-2) and synthetic aperture radar (SAR) antenna (Terrasar-X and Radarsat-2) satellites. The altimetry data (data are obtained every 35 days) and the HR images (77) have been available since 2003 and 2010, respectively. In situ data (for the water levels and volumes) going back to 2003 have been provided by the manager of the lake. Three independent approaches are developed to estimate the lake volume and its temporal variability. The first two approaches (HRBV and ABV) are empirical and use synchronous ground measurements of the water volume and the satellite data. The results demonstrate that altimetry and imagery can be effectively and accurately used to monitor the temporal variations of the lake (R2ABV = 0.98, RMSEABV = 5%, R2HRBV = 0.90, and RMSEABV = 7.4%), assuming a time-varying triangular shape for the shore slope of the lake (this form is well adapted since it implies a difference inferior to 2% between the theoretical volume of the lake and the one estimated from bathymetry). The third method (AHRBVC) combines altimetry (to measure the lake level) and satellite images (of the lake surface) to estimate the volume changes of the lake and produces the best results (R2AHRBVC = 0.98) of the three methods, demonstrating the potential of future Sentinel and SWOT missions to monitor small lakes and reservoirs for agricultural and irrigation applications.


2017 ◽  
Vol 49 (1) ◽  
pp. 281-290 ◽  
Author(s):  
Santiago García-López ◽  
Verónica Ruiz-Ortiz ◽  
Juan José Muñoz-Pérez

Abstract A methodology based on the use of time-lapse photographs is presented to evaluate the leakages over time of a reservoir (Montejaque dam, Málaga Province, Spain) that feeds a karstic aquifer. In particular, photographic control allows the evolution of water levels in the dam and the river that feeds it to be monitored. Through changes in water volume, which are calculated from the level differences, daily leakages are evaluated, and the relationship between leakages and the water level of the reservoir is established. The proposed method includes adjusting the hydric balance and the use of digital terrain model and climate data. The inputs (river flow and direct precipitation) and other outputs (direct evaporation) are also evaluated. Values between 4 m3/s and 0.35 m3/s are obtained for the reservoir infiltration, clearly superior to the values obtained at the time of the construction of the dam in the 1920s. Mobilisation of the filling of fractures and conduits in karstic massif and calcite dissolution are processes that can influence this behaviour. When the water level is very low, the obtained values are below the historical leakages due to deposition of clay sediments at the reservoir bottom.


2016 ◽  
Vol 75 (s2) ◽  
Author(s):  
Helmi Saidi ◽  
Claudia Dresti ◽  
Marzia Ciampittiello

While the effects of past industrial pollution on the chemistry and biology of Lake Orta have been well documented, annual and seasonal fluctuations of lake levels have not yet been studied. Considering their potential impacts on both the ecosystem and on human safety, fluctuations in lake levels are an important aspect of limnological research. In the enormous catchment of Lake Maggiore, there are many rivers and lakes, and the amount of annual precipitation is both high and concentrated in spring and autumn. This has produced major flood events, most recently in November 2014. Flood events are also frequent on Lake Orta, occurring roughly triennially since 1917. The 1926, 1951, 1976 and 2014 floods were severe, with lake levels raised from 2.30 m to 3.46 m above the hydrometric zero. The most important event occurred in 1976, with a maximum level equal to 292.31 m asl and a return period of 147 years. In 2014 the lake level reached 291.89 m asl and its return period was 54 years. In this study, we defined trends and temporal fluctuations in Lake Orta water levels from 1917 to 2014, focusing on extremes. We report both annual maximum and seasonal variations of the lake water levels over this period. Both Mann-Kendall trend tests and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes, and logistic regression was used to detect trends in the number of flood events. Lake level decreased during winter and summer seasons, and a small but statistically non-significant positive trend was found in the number of flood events over the period. We provide estimations of return period for lake levels, a metric which could be used in planning lake flood protection measures.


Sign in / Sign up

Export Citation Format

Share Document