Sedimentary Cladocera as indicators of past water-level changes in shallow northern lakes

2011 ◽  
Vol 75 (3) ◽  
pp. 430-437 ◽  
Author(s):  
Liisa Nevalainen ◽  
Kaarina Sarmaja-Korjonen ◽  
Tomi P. Luoto

AbstractThe usability of subfossil Cladocera assemblages in reconstructing long-term changes in lake level was examined by testing the relationship between Cladocera-based planktonic/littoral (P/L) ratio and water-level inference model in a surface-sediment dataset and in a 2000-yr sediment record in Finland. The relationships between measured and inferred water levels and P/L ratios were significant in the dataset, implying that littoral taxa are primarily deposited in shallow littoral areas, while planktonic cladocerans accumulate abundantly mainly in deepwater locations. The 2000-yr water-level reconstructions based on the water-level inference model and P/L ratio corresponded closely with each other and with a previously available midge-inferred water-level reconstruction from the same core, showing a period of lower water level around AD 300–1000 and suggesting that the methods are valid for paleolimnological and -climatological use.

2013 ◽  
Vol 6 (3-4) ◽  
pp. 1-11 ◽  
Author(s):  
Andrea Kiss ◽  
József Laszlovszky

Abstract In the present paper an overview of published and unpublished results of archaeological and sedimentary investigations, predominantly reflect on 14th-16th-century changes, are provided and evidence compared to documentary information on flood events and long-term changes. Long-term changes in flood behaviour (e.g. frequency, intensity, seasonality) and average water-level conditions had long-term detectable impacts on sedimentation and fluvio-morphological processes. Moreover, the available archaeological evidence might also provide information on the reaction of the society, in the form of changes in settlement organisation, building structures and processes. At present, information is mainly available concerning the 16th, and partly to the 14th-15th centuries. These results were compared to the available documentary evidence on 14th-16th century Danube floods occurred in the Carpathian Basin.


2020 ◽  
Vol 12 (9) ◽  
pp. 1448 ◽  
Author(s):  
Peng Li ◽  
Hui Li ◽  
Fang Chen ◽  
Xiaobin Cai

Satellite altimetry has been effectively used for monitoring lake level changes in recent years. This work focused on the integration of multiple satellite altimetry datasets from ICESat-1, Envisat and Cryosat-2 for the long-term (2002–2017) observation of lake level changes in the middle and lower Yangtze River Basin (MLYB). Inter-altimeter biases were estimated by using the gauged daily water level data. It showed that the average biases of ICESat-1 and Cryosat-2 with respect to Envisat were 6.7 cm and 3.1 cm, respectively. The satellite-derived water levels were evaluated against the gauged data. It indicated significantly high correlations between the two datasets, and the combination of three altimetry data produced precise water level time series with high temporal and spatial resolutions. A liner regression model was used to estimate the rates of lake level changes over the study period after the inter-altimeter bias adjustment was performed. The results indicated that ~79% of observed lakes (41/52) showed increasing trends in water levels with rates up to 0.203 m/y during 2002–2017. The temporal analysis of lake level variations suggested that ~60% of measured lakes (32/53) showed decreasing trends during 2002–2009 while ~66% of measured lakes (79/119) exhibited increasing trends during 2010–2017. Most of measured reservoirs displayed rapidly rising trends during the study period. The driving force analysis indicated that the temporal heterogeneity of precipitation can be mainly used to explain the observed pattern of lake level changes. The operation of reservoirs and human water consumption were also responsible for the lake level variations. This work demonstrated the potential of integrating multiple satellite altimeters for the long-term monitoring of lake levels, which can help to evaluate the impact of climate change and anthropogenic activities on regional water resources.


Author(s):  
Mariusz Ptak ◽  
Mariusz Sojka ◽  
Bogusław Nowak

The paper presents long-term changes in water levels of Prosna, one of the main rivers in Wielkopolska, i.e. the region which is widely regarded as one of the least abundant in water in Poland. It was established that during the last 40 years the average annual water levels of Prosny showed a downward trend at the level of 7.8 cm-dec-1 and were statistically significant at the level of p=0.05 and also p=0.01. In all months a decrease in the water level was noted, although it was statistically significant in seven cases. The highest decrease in average monthly water levels (statistically significant, p=0.05) occurred in August and December and progressed at a rate of 13.2 and 12.3 cm-dec-1. The consequence of the ongoing trend may be, among others, worsening of ichthyofauna living conditions or worse quality of Prosny's water.


2017 ◽  
Vol 63 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Hiroki HIRAYAMA ◽  
Akira NAITO ◽  
Shigeo FUKUDA ◽  
Takashi FUJII ◽  
Masatsugu ASADA ◽  
...  

2020 ◽  
Vol 223 (2) ◽  
pp. 1288-1303
Author(s):  
K Strehlow ◽  
J Gottsmann ◽  
A Rust ◽  
S Hautmann ◽  
B Hemmings

Summary Aquifers are poroelastic bodies that respond to strain by changes in pore pressure. Crustal deformation due to volcanic processes induces pore pressure variations that are mirrored in well water levels. Here, we investigate water level changes in the Belham valley on Montserrat over the course of 2 yr (2004–2006). Using finite element analysis, we simulate crustal deformation due to different volcanic strain sources and the dynamic poroelastic aquifer response. While some additional hydrological drivers cannot be excluded, we suggest that a poroelastic strain response of the aquifer system in the Belham valley is a possible explanation for the observed water level changes. According to our simulations, the shallow Belham aquifer responds to a steadily increasing sediment load due to repeated lahar sedimentation in the valley with rising aquifer pressures. A wholesale dome collapse in May 2006 on the other hand induced dilatational strain and thereby a short-term water level drop in a deeper-seated aquifer, which caused groundwater leakage from the Belham aquifer and thereby induced a delayed water level fall in the wells. The system thus responded to both gradual and rapid transient strain associated with the eruption of Soufrière Hills Volcano (Montserrat). This case study gives field evidence for theoretical predictions on volcanic drivers behind hydrological transients, demonstrating the potential of hydrological data for volcano monitoring. Interrogation of such data can provide valuable constraints on stress evolution in volcanic systems and therefore complement other monitoring systems. The presented models and inferred results are conceptually applicable to volcanic areas worldwide.


2020 ◽  
Vol 12 (24) ◽  
pp. 10654
Author(s):  
Wenwen Tan ◽  
Li Sun ◽  
Xinhou Zhang ◽  
Changchun Song

Zonation along a water level is the main spatial distribution characteristic of wetland plants. This is mainly because of the influences of hydrological conditions and interspecific competition, which finally narrow the fundamental niche of a species to its realized niche. In the present study, a controlled experiment was conducted in order to analyze the relationship between Carex lasiocarpa/Carex pseudocuraica and Glyceria spiculosa, in conditions of three competitive treatments at four water levels. The results showed that in no competition, C. lasiocarpa preferred low water levels, but this preference receded when competing with G. spiculosa. In contrast, C. pseudocuraica had greater preference for low water level when competing with G. spiculosa. The root/shoot ratios of the two Carex species decreased with increasing water levels, but they were almost unaffected by different competition treatments. With the increase in water level during full competition with G. spiculosa, the competitive ability of C. lasiocarpa showed an increasing trend, whereas a contrary trend was observed in C. pseudocuraica. Our results suggested the effects of water levels and their interactions with interspecific competition varied between the two Carex species and played an important role in determining spatial distribution patterns and potential community succession of wetland plants.


2020 ◽  
Vol 46 (4) ◽  
pp. 813-823 ◽  
Author(s):  
Upendra Bhele ◽  
Burak Öğlü ◽  
Arvo Tuvikene ◽  
Priit Bernotas ◽  
Maidu Silm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document