UAV-derived change detection without ground control points, an example from the cliff coast of Rügen

Author(s):  
Kristen Cook ◽  
Michael Dietze

<p><span>High resolution topographic models generated from repeat unmanned aerial vehicle (UAV) surveys and structure from motion (SfM) are increasingly being used to investigate landscape changes and geomorphic processes. Traditionally, accurate UAV surveys require the use of independently measured ground control points or highly accurate camera position measurements. However, in addition to accuracy in an absolute sense (how well modeled topography matches real topography), model quality can be expressed as accuracy in a comparative sense (the degree to which two models match each other). We present a simple SfM workflow for calculating pairs or sets of models with a high comparative accuracy, without the need for ground control points or a d</span><span>G</span><span>NSS equipped </span><span>UAV. The method is based on the automated detection of common tie points in stable portions of the survey area and, c</span><span>ompared to a standard SfM approach without ground control, reduces the level of change detection in our surveys from several meters to 10-15 cm. </span><span>We apply this</span><span> approach in a multi-year monitoring campaign of an 8 km stretch of coastal cliffs on the island of Rügen, Germany. We are able to detect numerous mass wasting events as well as bands of more diffuse erosion in chalk sections of the cliff. Both the cliff collapses and the diffuse erosion appear to be strongly influenced by antecedent precipitation over seasonal timescales, with much greater activity during the winter of 2017-2018, following an above average wet summer, than during the subsequent two winters, which both followed relatively dry summers. This points to the influence of subsurface water storage in modulating cliff erosion on Rügen.</span></p>

2019 ◽  
Vol 7 (4) ◽  
pp. 1009-1017 ◽  
Author(s):  
Kristen L. Cook ◽  
Michael Dietze

Abstract. High-quality 3-D point clouds generated from repeat camera-equipped unmanned aerial vehicle (UAV) surveys are increasingly being used to investigate landscape changes and geomorphic processes. Point cloud quality can be expressed as accuracy in a comparative (i.e., from survey to survey) and absolute (between survey and an external reference system) sense. Here we present a simple workflow for calculating pairs or sets of point clouds with a high comparative accuracy, without the need for ground control points or a differential GNSS (dGNSS)-equipped UAV. The method is based on the automated detection of common tie points in stable portions of the survey area. We demonstrate the efficacy of the new approach using a consumer-grade UAV in two contrasting landscapes: the coastal cliffs on the island of Rügen, Germany, and the tectonically active Daan River gorge in Taiwan. Compared to a standard approach using ground control points, our workflow results in a nearly identical distribution of measured changes. Compared to a standard approach without ground control, our workflow reduces the level of change detection from several meters to 10–15 cm. This approach enables robust change detection using UAVs in settings where ground control is not feasible.


2019 ◽  
Author(s):  
Kristen L. Cook ◽  
Michael Dietze

Abstract. High quality 3D point clouds generated from repeat camera-equipped unmanned aerial vehicle (UAV) surveys are increasingly being used to investigate landscape changes and geomorphic processes. Point cloud quality can be expressed as accuracy in a comparative (i.e., from survey to survey) and absolute (between survey and an external reference system) sense. Here we present a simple workflow for calculating pairs or sets of point clouds with a high comparative accuracy, without the need for ground control points or a dGPS equipped UAV. We demonstrate the efficacy of the new approach using a consumer-grade UAV in two contrasting landscapes: the coastal cliffs on the Island of Rügen, Germany, and the tectonically active Daan River gorge in Taiwan. Compared to a standard approach using ground control points, our workflow results in a nearly identical distribution of measured changes. Compared to a standard approach without ground control, our workflow reduces the level of change detection from several meters to 10–15 cm. This approach enables robust change detection using UAVs in settings where ground control is not possible.


Author(s):  
T. J. B. Dewez

Coastal cliff collapse hazard assessment requires measuring cliff face topography at regular intervals. Terrestrial laser scanner techniques have proven useful so far but are expensive to use either through purchasing the equipment or through survey subcontracting. In addition, terrestrial laser surveys take time which is sometimes incompatible with the time during with the beach is accessible at low-tide. By comparison, structure from motion techniques (SFM) are much less costly to implement, and if airborne, acquisition of several kilometers of coastline can be done in a matter of minutes. In this paper, the potential of GPS-tagged oblique airborne photographs and SFM techniques is examined to reconstruct chalk cliff dense 3D point clouds without Ground Control Points (GCP). The focus is put on comparing the relative 3D point of views reconstructed by Visual SFM with their synchronous Solmeta Geotagger Pro2 GPS locations using robust estimators. With a set of 568 oblique photos, shot from the open door of an airplane with a triplet of synchronized Nikon D7000, GPS and SFM-determined view point coordinates converge to X: ±31.5 m; Y: ±39.7 m; Z: ±13.0 m (LE66). Uncertainty in GPS position affects the model scale, angular attitude of the reference frame (the shoreline ends up tilted by 2°) and absolute positioning. Ground Control Points cannot be avoided to orient such models.


2021 ◽  
Vol 62 (4) ◽  
pp. 38-47
Author(s):  
Long Quoc Nguyen ◽  

To evaluate the accuracy of the digital surface model (DSM) of an open-pit mine produced using photos captured by the unmanned aerial vehicle equipped with the post-processing dynamic satellite positioning technology (UAV/PPK), a DSM model of the Deo Nai open-pit coal mine was built in two cases: (1) only using images taken from UAV/PPK and (2) using images taken from UAV/PPK and ground control points (GCPs). These DSMs are evaluated in two ways: using checkpoints (CPs) and comparing the entire generated DSM with the DSM established by the electronic total station. The obtained results show that if using CPs, in case 1, the errors in horizontal and vertical dimension were 6.8 and 34.3 cm, respectively. When using two or more GCPs (case 2), the horizontal and vertical errors are at the centimetre-level (4.5 cm and 4.7 cm); if using the DSM comparison, the same accuracy as case 2 was also obtained.


UKaRsT ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 49
Author(s):  
Dian Wahyu Khaulan ◽  
Entin Hidayah ◽  
Gusfan Halik

The Digital Surface Model (DSM) is commonly used in studies on flood map modeling. The lack of accurate, high-resolution topography data has hindered flood modeling. The use of the Unmanned Aerial Vehicle (UAV) can help data acquisition with sufficient accuracy. This research aims to provide high-resolution DSM-generated maps by Ground Control Points (GCPs) settings. Improvement of the model's accuracy was pursued by distributing 20 GCPs along the edges of the study area. Agrisoft software was used to generate the DSM. The generated DSM can be used for various planning purposes. The model's accuracy is measured in Root Mean Square Error (RMSE) based on the generated DSM. The RMSE values are 0.488 m for x-coordinates and y-coordinates (horizontal direction) and 0.161 m for z-coordinates (vertical direction).


2018 ◽  
Vol 10 (10) ◽  
pp. 1606 ◽  
Author(s):  
Enoc Sanz-Ablanedo ◽  
Jim Chandler ◽  
José Rodríguez-Pérez ◽  
Celestino Ordóñez

The geometrical accuracy of georeferenced digital surface models (DTM) obtained from images captured by micro-UAVs and processed by using structure from motion (SfM) photogrammetry depends on several factors, including flight design, camera quality, camera calibration, SfM algorithms and georeferencing strategy. This paper focusses on the critical role of the number and location of ground control points (GCP) used during the georeferencing stage. A challenging case study involving an area of 1200+ ha, 100+ GCP and 2500+ photos was used. Three thousand, four hundred and sixty-five different combinations of control points were introduced in the bundle adjustment, whilst the accuracy of the model was evaluated using both control points and independent check points. The analysis demonstrates how much the accuracy improves as the number of GCP points increases, as well as the importance of an even distribution, how much the accuracy is overestimated when it is quantified only using control points rather than independent check points, and how the ground sample distance (GSD) of a project relates to the maximum accuracy that can be achieved.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2318 ◽  
Author(s):  
Martin Štroner ◽  
Rudolf Urban ◽  
Tomáš Reindl ◽  
Jan Seidl ◽  
Josef Brouček

Using a GNSS RTK (Global Navigation Satellite System Real Time Kinematic) -equipped unmanned aerial vehicle (UAV) could greatly simplify the construction of highly accurate digital models through SfM (Structure from Motion) photogrammetry, possibly even avoiding the need for ground control points (GCPs). As previous studies on this topic were mostly performed using fixed-wing UAVs, this study aimed to investigate the results achievable by a quadrocopter (DJI Phantom 4 RTK). Three image acquisition flights were performed for two sites of a different character (urban and rural) along with three calculation variants for each flight: georeferencing using ground-surveyed GCPs only, onboard GNSS RTK only, and a combination thereof. The combined and GNSS RTK methods provided the best results (at the expected level of accuracy of 1–2 GSD (Ground Sample Distance)) for both the vertical and horizontal components. The horizontal positioning was also accurate when georeferencing directly based on the onboard GNSS RTK; the vertical component, however, can be (especially where the terrain is difficult for SfM evaluation) burdened with relatively high systematic errors. This problem was caused by the incorrect identification of the interior orientation parameters calculated, as is customary for non-metric cameras, together with bundle adjustment. This problem could be resolved by using a small number of GCPs (at least one) or quality camera pre-calibration.


2020 ◽  
Vol 12 (20) ◽  
pp. 3336 ◽  
Author(s):  
Marta Lalak ◽  
Damian Wierzbicki ◽  
Michał Kędzierski

Unmanned aerial vehicle (UAV) systems are often used to collect high-resolution imagery. Data obtained from UAVs are now widely used for both military and civilian purposes. This article discusses the issues related to the use of UAVs for the imaging of restricted areas. Two methods of developing single-strip blocks with the optimal number of ground control points are presented. The proposed methodology is based on a modified linear regression model and an empirically modified Levenberg–Marquardt–Powell algorithm. The effectiveness of the proposed methods of adjusting a single-strip block were verified based on several test sets. For method I, the mean square errors (RMSE) values for the X, Y, Z coordinates of the control points were within the range of 0.03–0.13 m/0.08–0.09 m, and for the second method, 0.03–0.04 m/0.06–0.07 m. For independent control points, the RMSE values were 0.07–0.12 m/0.06–0.07 m for the first method and 0.07–0.12 m/0.07–0.09 m for the second method. The results of the single-strip block adjustment showed that the use of the modified Levenberg–Marquardt–Powell method improved the adjustment accuracy by 13% and 16%, respectively.


Sign in / Sign up

Export Citation Format

Share Document