Towards a Pan-European snow cover and melt extent product from Sentinel-1 SAR and Sentinel-3 SLSTR Data

Author(s):  
Thomas Nagler ◽  
Lars Keuris ◽  
Helmut Rott ◽  
Gabriele Schwaizer ◽  
David Small ◽  
...  

<p>The synergistic use of data from different satellites of the Sentinel series offers excellent capabilities for generating high quality products on key parameters of the global climate system and environment. A main parameter for climate monitoring, hydrology and water management is the seasonal snow cover. In the frame of the ESA project SEOM S1-4-SCI Snow, led by ENVEO, we developed, implemented and tested a novel approach for mapping the total extent and melting areas of the seasonal snow cover by synergistically exploiting Sentinel-1 SAR and Sentinel-3 SLSTR data and apply these tools for snow monitoring over the Pan-European domain.</p><p>Whereas data of medium resolution optical sensors are used for mapping the total snow extent, data of the Copernicus Sentinel-1 mission in Interferometric Wide Swath (IW) mode at co- and cross-polarizations are used for mapping the extent of snowmelt areas applying change detection algorithms. In order to select an optimum procedure for retrieval of snowmelt area, we conducted round-robin experiments for various algorithms over different snow environments, including high mountain areas in the Alps and in Scandinavia, as well as lowland areas in Central Europe covered by grassland, agricultural plots, and forests. In mountain areas the tests show good agreement between snow extent products during the melting period derived from SAR data and from Sentinel-2 and Landsat-8 data. In lowlands ambiguities may arise from temporal changes in backscatter related to soil moisture and agricultural activities. Dense forest cover is a major obstacle for snow detection by SAR because the surface is masked by the canopy layer which is a major scattering source at C-band. Therefore, areas with dense forest cover are masked out. Based on this results we selected for the retrieval of snowmelt area a change-detection algorithm using dual-polarized backscatter data of S1 IW acquisitions. The algorithm applies multi-channel speckle filtering and data fusion procedures for exploiting VV- and VH-polarized multi-temporal ratio images. The binary SAR snowmelt extent product at 100 m grid size is combined with the Sentinel-3 SLSTR and MODIS snow products in order to obtain combined maps of total snow area and melting snow. The optical satellite images provide information on snow extent irrespective of melting state but are impaired by cloud cover. For generating a fractional snow extent product from MODIS and Sentinel-3 SLSTR data we apply multi-spectral algorithms for cloud screening, the discrimination of snow free and snow covered regions and the retrieval of fractional snow extent. In order to fill gaps in the optical snow extent time sequence due to cloud cover we apply a data assimilation procedure using a snow pack model driven by numerical meteorological data of ECMWF, simulating daily changes in the snow extent. We present the results of the Pan-European snow cover and melt extent product derived from optical and SAR data. The performance of this product is evaluated in different environments using independent validation data sets including in-situ snow and meteorological measurements, snow products from Sentinel-2 and Landsat images, as well as high resolution numerical meteorological data.</p>

2018 ◽  
Author(s):  
Akiko Sakai

Abstract. The first version of the Glacier Area Mapping for Discharge from the Asian Mountains (GAMDAM) glacier inventory was the first methodologically consistent glacier inventory covering High Mountain Asia, and it underestimated glacier area because it did not include steep slopes covered with ice or snow and shadowed areas. During the process of revising the GAMDAM glacier inventory, source Landsat images were carefully selected to find images free of shadows, cloud cover, and seasonal snow cover taken from 1990 to 2010. Then, more than 90 % of the glacier area in the final version of the GAMDAM glacier inventory was delineated based on summer Landsat images. The total glacier area was 100,693±15,103 km2 and included 134,770 glaciers using 453 Landsat image scenes.


2013 ◽  
Vol 37 (4) ◽  
pp. 296-305 ◽  
Author(s):  
Qi-Qian WU ◽  
Fu-Zhong WU ◽  
Wan-Qin YANG ◽  
Zhen-Feng XU ◽  
Wei HE ◽  
...  

2014 ◽  
Vol 60 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Snehmani ◽  
Anshuman Bhardwaj ◽  
Mritunjay Kumar Singh ◽  
R.D. Gupta ◽  
Pawan Kumar Joshi ◽  
...  

2018 ◽  
Vol 12 (4) ◽  
pp. 1137-1156 ◽  
Author(s):  
Paul J. Kushner ◽  
Lawrence R. Mudryk ◽  
William Merryfield ◽  
Jaison T. Ambadan ◽  
Aaron Berg ◽  
...  

Abstract. The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of multidecadal simulations. Improvements in climate-prediction systems like CanSIPS rely not just on simulation quality but also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting for observational uncertainty in forecast verification, and sea ice thickness initialization using statistical predictors available in real time.


1995 ◽  
Vol 41 (139) ◽  
pp. 474-482 ◽  
Author(s):  
Gary Koh ◽  
Rachel Jordan

AbstractThe ability of solar radiation to penetrate into a snow cover combined with the low thermal conductivity of snow can lead to a sub-surface temperature maximum. This elevated sub-surface temperature allows a layer of wet snow to form below the surface even on days when the air temperature remains sub-freezing. A high-resolution frequency-modulated continuous wave (FMCW) radar has been used to detect the onset of sub-surface melting in a seasonal snow cover. The experimental observation of sub-surface melting is shown to be in good agreement with the predictions of a one-dimensional mass- and energy-balance model. The effects of varying snow characteristics and solar extinction parameters on the sub-surface melt characteristics are investigated using model simulations.


Sign in / Sign up

Export Citation Format

Share Document