Tectonic evolution of the Congo Basin using geophysical data and 3D numerical simulations

Author(s):  
Francesca Maddaloni ◽  
Damien Delvaux ◽  
Magdala Tesauro ◽  
Taras Gerya ◽  
Carla Braitenberg

<p>The Congo basin (CB) is an intracratonic basin that occupies a large part of the Congo Craton (1.2 million km<sup>2</sup>) covering approximately 10% of the continent [1]. It contains up to 9 km of sedimentary rocks from the Mesoproterozoic until Cenozoic age. The formation of the CB started with a rifting phase during Mesoproterozoic with the amalgamation of the Rodinia supercontinent (1.2 Gyr). Afterwards, the main episodes of subsidence occurred during the subsequent Neoproterozoic post-rift phases, which were followed by phases of compression at the end of the Permian and during the Early Jurassic age and other sedimentation episodes during Upper Cretaceous and Cenozoic [2].</p><p> We reconstruct the stratigraphy and tectonic evolution of the basin by analyzing seismic reflection profiles. Furthermore, we estimated the velocity, density, and thickness of the sedimentary layers in order to calculate their gravity effect. Afterwards, we calculate the gravity disturbance and Bouguer anomalies using a combined satellite and terrestrial data gravity model. The gravity disturbance obtained from the EIGEN-6C4 gravity model [3] shows two types of anomalies. One with a long wavelength (~50 mGal) that covers the entire area of the Congo basin and a second one with a short wavelength (~130 mGal), having a NW-SE trend, which corresponds to the main depocenters of sediments detected by the interpretation of seismic reflection profiles. These results have been used as input parameters for 3D numerical simulations to test the main mechanisms of formation and evolution of the CB. For this aim, we used the thermomechanical I3ELVIS code [4] to simulate the initial rift phase. The numerical tests have been conducted considering a sub-circular weak zone in the central part of the cratonic lithosphere [2] and applying a velocity of 2.5 cm/yr in two orthogonal directions (NS and EW), to test the hypothesis of the formation of a multi extensional rift in a cratonic area. We repeated these numerical tests by increasing the size of the weak zone and varying its lithospheric thickness. The results of these first numerical experiments show the formation of a circular basin in the central part of the cratonic lithosphere, in response to extensional stress, inducing the uplift of the asthenosphere.</p><p>[1] Kadima, et al. (2011), Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data, doi:10.1111/j.1365-2117.2011.00500.x.<br>[2] De Wit, et al. (2008), Restoring Pan-African-Brasiliano connections: more Gondwana control, less Trans-Atlantic corruption, doi:10.1144/SP294.20<br>[3] Förste et al. (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse; doi: 10.5880/ICGEM.2015.1, 2014<br>[4] Gerya (2009), Introduction to numerical geodynamic modelling, Cambridge University Press</p>

2021 ◽  
Author(s):  
Francesca Maddaloni ◽  
Damien Delvaux ◽  
Magdala Tesauro ◽  
Taras Gerya ◽  
Carla Braitenberg

<p>The Congo basin (CB), considered as a typical intracratonic basin, due its slow and long-lived subsidence history and the largely unknown formation mechanisms, occupies a large part of the Congo craton, derived from the amalgamation of different cratonic pieces. It recorded the history of deposition of up to one billion years of sediments, one of the longest geological records on Earth above a metamorphic basement. The CB initiated very probably as a failed rift in late Mesoproterozoic and evolved during the Neoproterozoic and Phanerozoic under the influence of far-field compressional tectonic events, global climate fluctuation between icehouse and greenhouse conditions and drifting of Central Africa through the South Pole then towards its present-day equatorial position. Since Cretaceous, the CB has been subjected to an intraplate compressional setting due to ridge-push forces related to the spreading of the South Atlantic Ocean, where most of sediments are being eroded and accumulated only in the center of the basin.</p><p>In this study, we first reconstructed the stratigraphy, the depths of the main seismic horizons, and the tectonic history of the CB, using geological and exploration geophysical data. In particular, we interpreted about 2600 km of seismic reflection profiles and well log data located inside the central area of the CB (Cuvette Centrale). We used the obtained results to constrain the gravity field data that we analyzed, in order to reconstruct the depth of the basement and investigate the shallow crustal structure of the basin. To this purpose, we used a gravity inversion method with two different density contrasts between the surface sediments and crystalline rocks.</p><p>The results evidence NW-SE trending structures, also revealed by magnetic and seismic data, corresponding to the alternation of highs and sediments filled topographic depressions, related to rift structures, characterizing the first stage of evolution of the CB. They also show a general good consistency between the seismic and gravity basement along the seismic profiles and evidence the presence of possible high-density bodies in the shallow to deep crust. The identified structures are prevalently the product of an extensional tectonics, which likely acted in more than one direction.</p><p>Therefore, we performed 3D numerical simulations to test the hypothesis of the formation of the CB as multi-extensional rift in a cratonic area, using the thermomechanical I3ELVIS code, based on a combination of a finite difference method applied on a uniformly spaced Eulerian staggered grid with the marker-in-cell technique. To this purpose, the numerical tests have been conducted considering a sub-circular weak zone in the central part of the cratonic lithosphere and applying a velocity of 2.5 cm/yr in two orthogonal directions (N-S and E-W). We repeated these numerical tests by increasing the size of the weak zone and varying its lithospheric thickness. The results show the formation of a circular basin in the central part of the cratonic lithosphere, characterized by a series of highs and depressions, consistent with those obtained from geophysical/geological reconstructions.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 283
Author(s):  
Allan Audsley ◽  
Tom Bradwell ◽  
John Howe ◽  
John Baxter

Sub-seabed gas is commonly associated with seabed depressions known as pockmarks—the main venting sites for hydrocarbon gases to enter the water column. Sub-seabed gas accumulations are characterized by acoustically turbid or opaque zones in seismic reflection profiles, taking the form of gas blankets, curtains or plumes. How the migration of sub-seabed gas relates to the origin and distribution of pockmarks in nearshore and fjordic settings is not well understood. Using marine geophysical data from Loch Linnhe, a Scottish fjord, we show that shallow sub-seabed gas occurs predominantly within glaciomarine facies either as widespread blankets in basins or as isolated pockets. We use geospatial ‘hot-spot’ analysis conducted in ArcGIS to identify clusters of pockmarks and acoustic (sub-seabed) profile interpretation to identify the depth to gas front across the fjord. By combining these analyses, we find that the gas below most pockmarks in Loch Linnhe is between 1.4 m and 20 m deep. We anticipate that this work will help to understand the fate and mobility of sedimentary carbon in fjordic (marine) settings and advise offshore industry on the potential hazards posed by pockmarked seafloor regions even in nearshore settings.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 117
Author(s):  
Maria Filomena Loreto ◽  
Camilla Palmiotto ◽  
Filippo Muccini ◽  
Valentina Ferrante ◽  
Nevio Zitellini

The southern part of Tyrrhenian back-arc basin (NW Sicily), formed due to the rifting and spreading processes in back-arc setting, is currently undergoing contractional tectonics. The analysis of seismic reflection profiles integrated with bathymetry, magnetic data and seismicity allowed us to map a widespread contractional tectonics structures, such as positive flower structures, anticlines and inverted normal faults, which deform the sedimentary sequence of the intra-slope basins. Two main tectonic phases have been recognised: (i) a Pliocene extensional phase, active during the opening of the Vavilov Basin, which was responsible for the formation of elongated basins bounded by faulted continental blocks and controlled by the tear of subducting lithosphere; (ii) a contractional phase related to the Africa-Eurasia convergence coeval with the opening of the Marsili Basin during the Quaternary time. The lithospheric tear occurred along the Drepano paleo-STEP (Subduction-Transform-Edge-Propagator) fault, where the upwelling of mantle, intruding the continental crust, formed a ridge. Since Pliocene, most of the contractional deformation has been focused along this ridge, becoming a good candidate for a future subduction initiation zone.


Sign in / Sign up

Export Citation Format

Share Document