Evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica

Author(s):  
Jennifer Arthur ◽  
Chris Stokes ◽  
Stewart Jamieson ◽  
Rachel Carr ◽  
Amber Leeson

<p>Supraglacial lakes (SGLs) enhance surface melting and their development and subsequent drainage can flex and fracture ice shelves, leading to their disintegration. However, the seasonal evolution of SGLs and their potential influence on ice shelf stability in East Antarctica remains poorly understood, despite a number of potentially vulnerable ice shelves. Using optical satellite imagery, climate reanalysis data and surface melt predicted by a regional climate model, we provide the first multi-year analysis (1974-2019) of seasonal SGL evolution on Shackleton Ice Shelf in Queen Mary Land, which is Antarctica’s northernmost remaining ice shelf. We mapped >43,000 lakes on the ice shelf and >5,000 lakes on grounded ice over the 45-year analysis period, some of which developed up to 12 km inland from the grounding line. Lakes clustered around the ice shelf grounding zone are strongly linked to the presence of blue ice and exposed rock, associated with an albedo-lowering melt-enhancing feedback. Lakes either drain supraglacially, refreeze at the end of the melt season, or shrink in-situ. Furthermore, we observe some relatively rapid (≤ 7 days) lake drainage events and infer that some lakes may be draining by hydrofracture. Our observations suggest that enhanced surface meltwater could increase the vulnerability of East Antarctic ice shelves already preconditioned for hydrofracture, namely those experiencing high surface melt rates, firn air depletion, and extensional stress regimes with minimum topographic confinement. Our results could be used to constrain simulations of current melt conditions on the ice shelf and to investigate the impact of increased surface melting on future ice shelf stability.</p>

2020 ◽  
Author(s):  
Jennifer F. Arthur ◽  
Chris R. Stokes ◽  
Stewart S. R. Jamieson ◽  
J. Rachel Carr ◽  
Amber A. Leeson

Abstract. Supraglacial lakes (SGLs) enhance surface melting and can flex and fracture ice shelves when they grow and subsequently drain, potentially leading to ice shelf disintegration. However, the seasonal evolution of SGLs and their influence on ice shelf stability in East Antarctica remains poorly understood, despite some potentially vulnerable ice shelves having high densities of SGLs. Using optical satellite imagery, air temperature data from climate reanalysis products and surface melt predicted by a regional climate model, we present the first long-term record (2000–2020) of seasonal SGL evolution on Shackleton Ice Shelf, which is Antarctica’s northernmost remaining ice shelf and buttresses Denman Glacier, a major outlet of the East Antarctic Ice Sheet. In a typical melt season, we find hundreds of SGLs with a mean area of 0.02 km2, a mean depth of 0.96 m, and a mean total meltwater volume of 7.45 x 106 m3. At their most extensive, SGLs cover a cumulative area of 50.7 km2 and are clustered near to the grounding line, where densities approach 0.27 km2 per km2. Here, SGL development is linked to an albedo-lowering feedback associated with katabatic winds, together with the presence of blue ice and exposed rock. Although below average seasonal (December-January-February, DJF) temperatures are associated with below average peaks in total SGL area and volume, warmer seasonal temperatures do not necessarily result in higher SGL areas and volumes. Rather, peaks in total SGL area and volume show a much closer correspondence with short-lived high magnitude snowmelt events. We therefore suggest seasonal lake evolution on this ice shelf is instead more sensitive to snowmelt intensity associated with katabatic wind-driven melting. Our analysis provides important constraints on the boundary conditions of supraglacial hydrology models and numerical simulations of ice shelf stability.


2020 ◽  
Vol 14 (11) ◽  
pp. 4103-4120 ◽  
Author(s):  
Jennifer F. Arthur ◽  
Chris R. Stokes ◽  
Stewart S. R. Jamieson ◽  
J. Rachel Carr ◽  
Amber A. Leeson

Abstract. Supraglacial lakes (SGLs) enhance surface melting and can flex and fracture ice shelves when they grow and subsequently drain, potentially leading to ice shelf disintegration. However, the seasonal evolution of SGLs and their influence on ice shelf stability in East Antarctica remains poorly understood, despite some potentially vulnerable ice shelves having high densities of SGLs. Using optical satellite imagery, air temperature data from climate reanalysis products and surface melt predicted by a regional climate model, we present the first long-term record (2000–2020) of seasonal SGL evolution on Shackleton Ice Shelf, which is Antarctica's northernmost remaining ice shelf and buttresses Denman Glacier, a major outlet of the East Antarctic Ice Sheet. In a typical melt season, we find hundreds of SGLs with a mean area of 0.02 km2, a mean depth of 0.96 m and a mean total meltwater volume of 7.45×106 m3. At their most extensive, SGLs cover a cumulative area of 50.7 km2 and are clustered near to the grounding line, where densities approach 0.27 km2 km−2. Here, SGL development is linked to an albedo-lowering feedback associated with katabatic winds, together with the presence of blue ice and exposed rock. Although below-average seasonal (December–January–February, DJF) temperatures are associated with below-average peaks in total SGL area and volume, warmer seasonal temperatures do not necessarily result in higher SGL areas and volumes. Rather, peaks in total SGL area and volume show a much closer correspondence with short-lived high-magnitude snowmelt events. We therefore suggest seasonal lake evolution on this ice shelf is instead more sensitive to snowmelt intensity associated with katabatic-wind-driven melting. Our analysis provides important constraints on the boundary conditions of supraglacial hydrology models and numerical simulations of ice shelf stability.


2021 ◽  
Author(s):  
Mariel Christina Dirscherl ◽  
Andreas J. Dietz ◽  
Claudia Kuenzer

Abstract. Supraglacial meltwater accumulation on ice shelves may have important implications for future sea-level-rise. Despite recent progress in the understanding of Antarctic surface hydrology, potential influences on ice shelf stability as well as links to environmental drivers remain poorly constrained. In this study, we employ state-of-the-art machine learning on Sentinel-1 Synthetic Aperture Radar (SAR) and optical Sentinel-2 satellite imagery to provide new insight into the inter-annual and intra-annual evolution of surface hydrological features across six major Antarctic Peninsula and East Antarctic ice shelves. For the first time, we produce a record of supraglacial lake extent dynamics for the period 2015–2021 at unprecedented 10 m spatial resolution and bi-weekly temporal scale. Through synergetic use of optical and SAR data, we obtain a more complete mapping record enabling the delineation of also buried lakes. Our results for Antarctic Peninsula ice shelves reveal below average meltwater ponding during most of melting seasons 2015–2018 and above average meltwater ponding throughout summer 2019–2020 and early 2020–2021. Meltwater ponding on investigated East Antarctic ice shelves was far more variable with above average lake extents during most of melting seasons 2016–2019 and below average lake extents during 2020–2021. This study is the first to investigate relationships with climate drivers both, spatially and temporally including time lag analysis. The results indicate that supraglacial lake formation in 2015–2021 is coupled to the complex interplay of varying air temperature, solar radiation, snowmelt, wind and precipitation, each at different time lags and directions and with strong local to regional discrepancies, as revealed through pixel-based correlation analysis. Southern Hemisphere atmospheric modes as well as the local glaciological setting including melt-albedo feedbacks and the firn air content were revealed to strongly influence the spatio-temporal evolution of supraglacial lakes as well as below or above average meltwater ponding despite variations in the strength of forcing. Recent increases of Antarctic Peninsula surface ponding point towards a further reduction of the firn air content implying an increased risk for ponding and hydrofracture. In addition, lateral meltwater transport was observed over both Antarctic regions with similar implications for future ice shelf stability.


2020 ◽  
Vol 14 (11) ◽  
pp. 4165-4180
Author(s):  
Jenny V. Turton ◽  
Amélie Kirchgaessner ◽  
Andrew N. Ross ◽  
John C. King ◽  
Peter Kuipers Munneke

Abstract. Warm, dry föhn winds are observed over the Larsen C Ice Shelf year-round and are thought to contribute to the continuing weakening and collapse of ice shelves on the eastern Antarctic Peninsula (AP). We use a surface energy balance (SEB) model, driven by observations from two locations on the Larsen C Ice Shelf and one on the remnants of Larsen B, in combination with output from the Antarctic Mesoscale Prediction System (AMPS), to investigate the year-round impact of föhn winds on the SEB and melt from 2009 to 2012. Föhn winds have an impact on the individual components of the surface energy balance in all seasons and lead to an increase in surface melt in spring, summer and autumn up to 100 km away from the foot of the AP. When föhn winds occur in spring they increase surface melt, extend the melt season and increase the number of melt days within a year. Whilst AMPS is able to simulate the percentage of melt days associated with föhn with high skill, it overestimates the total amount of melting during föhn events and non-föhn events. This study extends previous attempts to quantify the impact of föhn on the Larsen C Ice Shelf by including a 4-year study period and a wider area of interest and provides evidence for föhn-related melting on both the Larsen C and Larsen B ice shelves.


2021 ◽  
Vol 15 (2) ◽  
pp. 909-925
Author(s):  
Alison F. Banwell ◽  
Rajashree Tri Datta ◽  
Rebecca L. Dell ◽  
Mahsa Moussavi ◽  
Ludovic Brucker ◽  
...  

Abstract. In the 2019/2020 austral summer, the surface melt duration and extent on the northern George VI Ice Shelf (GVIIS) was exceptional compared to the 31 previous summers of distinctly lower melt. This finding is based on analysis of near-continuous 41-year satellite microwave radiometer and scatterometer data, which are sensitive to meltwater on the ice shelf surface and in the near-surface snow. Using optical satellite imagery from Landsat 8 (2013 to 2020) and Sentinel-2 (2017 to 2020), record volumes of surface meltwater ponding were also observed on the northern GVIIS in 2019/2020, with 23 % of the surface area covered by 0.62 km3 of ponded meltwater on 19 January. These exceptional melt and surface ponding conditions in 2019/2020 were driven by sustained air temperatures ≥0 ∘C for anomalously long periods (55 to 90 h) from late November onwards, which limited meltwater refreezing. The sustained warm periods were likely driven by warm, low-speed (≤7.5 m s−1) northwesterly and northeasterly winds and not by foehn wind conditions, which were only present for 9 h total in the 2019/2020 melt season. Increased surface ponding on ice shelves may threaten their stability through increased potential for hydrofracture initiation; a risk that may increase due to firn air content depletion in response to near-surface melting.


2020 ◽  
Author(s):  
Guillian Van Achter ◽  
Charles Pelletier ◽  
Thierry Fichefet

<p>The Totten ice shelf drains over 570 000 km² of East Antarctica. Most of the ice sheet that drains through the Totten ice-shelf is from Aurora Subglacial Basin and is marine based making the region potentially vulnerable to rapid ice sheet colapse.<br>Understanding how the changes in ocean circulation and properties are causing increased basal melt of Antarctic ice shelves is crucial for predicting future sea level rise.<br>In the context of the The PARAMOUR project (decadal predictability and variability of polar climate: the role of atmosphere-ocean-cryosphere multiscale interaction), we use a high resolution NEMO-LIM 3.6 regional model to investigate the variability and the predictability of the coupled climate system over the Totten area in East Antarctica.<br>In this poster, we will present our on-going work about the impact of landfast ice over the variability of the system. Landfast ice is sea ice that is fastened to the coastline, to the sea floor along shoals or to grouded icebergs. Current sea ice models are unable to represent very crudely the formation, maintenance and decay of coastal landfast ice. We applyed several parameterization for modeling landfast ice over the Totten ice shelf area.</p>


2014 ◽  
Vol 26 (6) ◽  
pp. 625-635 ◽  
Author(s):  
Adrian Luckman ◽  
Andrew Elvidge ◽  
Daniela Jansen ◽  
Bernd Kulessa ◽  
Peter Kuipers Munneke ◽  
...  

AbstractA common precursor to ice shelf disintegration, most notably that of Larsen B Ice Shelf, is unusually intense or prolonged surface melt and the presence of surface standing water. However, there has been little research into detailed patterns of melt on ice shelves or the nature of summer melt ponds. We investigated surface melt on Larsen C Ice Shelf at high resolution using Envisat advanced synthetic aperture radar (ASAR) data and explored melt ponds in a range of satellite images. The improved spatial resolution of SAR over alternative approaches revealed anomalously long melt duration in western inlets. Meteorological modelling explained this pattern by föhn winds which were common in this region. Melt ponds are difficult to detect using optical imagery because cloud-free conditions are rare in this region and ponds quickly freeze over, but can be monitored using SAR in all weather conditions. Melt ponds up to tens of kilometres in length were common in Cabinet Inlet, where melt duration was most prolonged. The pattern of melt explains the previously observed distribution of ice shelf densification, which in parts had reached levels that preceded the collapse of Larsen B Ice Shelf, suggesting a potential role for föhn winds in promoting unstable conditions on ice shelves.


2020 ◽  
Vol 47 (12) ◽  
Author(s):  
Hannes Eisermann ◽  
Graeme Eagles ◽  
Antonia Ruppel ◽  
Emma Clare Smith ◽  
Wilfried Jokat

2020 ◽  
Author(s):  
Alison F. Banwell ◽  
Rajashree Tri Datta ◽  
Rebecca L. Dell ◽  
Mahsa Moussavi ◽  
Ludovic Brucker ◽  
...  

Abstract. In the 2019/2020 austral summer, the surface melt duration and extent on the northern George VI Ice Shelf (GVIIS) was exceptional compared to the 31 previous summers of dramatically lower melt. This finding is based on analysis of near-continuous 41-year satellite microwave radiometer (and scatterometer) data, which are sensitive to meltwater on the ice-shelf surface and in the near-surface snow. Using optical satellite imagery from Landsat 8 (since 2013) and Sentinel-2 (since 2017), record volumes of surface meltwater ponding are also observed on north GVIIS in 2019/2020, with 23 % of the surface area covered by 0.62 km3 of meltwater on January 19. These exceptional melt and surface ponding conditions in 2019/2020 were driven by sustained air temperatures ≥ 0 °C for anomalously long periods (55–90 hours) from late November onwards, likely driven by warmer northwesterly and northeasterly low-speed winds. Increased surface ponding on ice shelves may threaten their stability through increased potential for hydrofracture initiation; a risk that may increase due to firn air content depletion in response to near-surface melting.


2021 ◽  
Author(s):  
Zhongyang Hu ◽  
Peter Kuipers Munneke ◽  
Stef Lhermitte ◽  
Maaike Izeboud ◽  
Michiel van den Broeke

Abstract. Accurately estimating surface melt volume of the Antarctic Ice Sheet is challenging, and has hitherto relied on climate modelling, or on observations from satellite remote sensing. Each of these methods has its limitations, especially in regions with high surface melt. This study aims to demonstrate the potential of improving surface melt simulations by deploying a deep learning model. A deep-learning-based framework has been developed to correct surface melt from the regional atmospheric climate model version 2.3p2 (RACMO2), using meteorological observations from automatic weather stations (AWSs), and surface albedo from satellite imagery. The framework includes three steps: (1) training a deep multilayer perceptron (MLP) model using AWS observations; (2) correcting moderate resolution imaging spectroradiometer (MODIS) albedo observations, and (3) using these two to correct the RACMO2 surface melt simulations. Using observations from three AWSs at the Larsen B and C Ice Shelves, Antarctica, cross-validation shows a high accuracy (root mean square error = 0.95 mm w.e. per day, mean absolute error = 0.42 mm w.e. per day, and coefficient of determination = 0.95). Moreover, the deep MLP model outperforms conventional machine learning models (e.g., random forest regression, XGBoost) and a shallow MLP model. When applying the trained deep MLP model over the entire Larsen Ice Shelf, the resulting, corrected RACMO2 surface melt shows a better correlation with the AWS observations for two out of three AWSs. However, for one location (AWS 18) the deep MLP model does not show improved agreement with AWS observations, likely due to the heterogeneous drivers of melt within the corresponding coarse resolution model pixels. Our study demonstrates the opportunity to improve surface melt simulations using deep learning combined with satellite albedo observations. On the other hand, more work is required to refine the method, especially for complicated and heterogeneous terrains.


Sign in / Sign up

Export Citation Format

Share Document