scholarly journals The influence of föhn winds on annual and seasonal surface melt on the Larsen C Ice Shelf, Antarctica

2020 ◽  
Vol 14 (11) ◽  
pp. 4165-4180
Author(s):  
Jenny V. Turton ◽  
Amélie Kirchgaessner ◽  
Andrew N. Ross ◽  
John C. King ◽  
Peter Kuipers Munneke

Abstract. Warm, dry föhn winds are observed over the Larsen C Ice Shelf year-round and are thought to contribute to the continuing weakening and collapse of ice shelves on the eastern Antarctic Peninsula (AP). We use a surface energy balance (SEB) model, driven by observations from two locations on the Larsen C Ice Shelf and one on the remnants of Larsen B, in combination with output from the Antarctic Mesoscale Prediction System (AMPS), to investigate the year-round impact of föhn winds on the SEB and melt from 2009 to 2012. Föhn winds have an impact on the individual components of the surface energy balance in all seasons and lead to an increase in surface melt in spring, summer and autumn up to 100 km away from the foot of the AP. When föhn winds occur in spring they increase surface melt, extend the melt season and increase the number of melt days within a year. Whilst AMPS is able to simulate the percentage of melt days associated with föhn with high skill, it overestimates the total amount of melting during föhn events and non-föhn events. This study extends previous attempts to quantify the impact of föhn on the Larsen C Ice Shelf by including a 4-year study period and a wider area of interest and provides evidence for föhn-related melting on both the Larsen C and Larsen B ice shelves.

2020 ◽  
Author(s):  
Jenny Victoria Turton ◽  
Amélie Kirchgaessner ◽  
Andrew N. Ross ◽  
John C. King ◽  
Peter Kuipers Munneke

Abstract. Warm, dry föhn winds are observed over the Larsen C Ice shelf year-round and are thought to contribute to the continuing weakening and collapse of ice shelves on the eastern Antarctic Peninsula. We use a surface energy balance (SEB) model, driven by observations from two locations on the Larsen C ice shelf and one on the remnants of Larsen B, in combination with output from the Antarctic Mesoscale Prediction System (AMPS), to investigate the year-round impact of föhn winds on the SEB and melt from 2009–2012. Föhn winds have an impact on the individual components of the surface energy balance in all seasons, and lead to an increase in surface melt in spring, summer and autumn up to 100 km away from the foot of the AP. When föhn winds occur in spring they increase surface melt, extend the melt season and increase the number of melt days within a year. Whilst AMPS is able to simulate the percentage of melt days associated with föhn with high skill, it overestimates the total amount of melting during föhn events and non-föhn events. This study extends previous attempts at quantifying the impact of föhn on the Larsen C ice shelf by including a four-year study period and a wider area of interest and provides evidence for föhn-related melting on both Larsen C and Larsen B ice shelves.


2017 ◽  
Vol 122 (22) ◽  
pp. 12,062-12,076 ◽  
Author(s):  
J. C. King ◽  
A. Kirchgaessner ◽  
S. Bevan ◽  
A. D. Elvidge ◽  
P. Kuipers Munneke ◽  
...  

2020 ◽  
Author(s):  
Naomi Lefroy ◽  
Neil Arnold

<p>Despite the well-researched implications of SGL development and drainage for changes in mass balance and dynamics on Greenland, little is known about the role of energy absorption by lakes on Antarctica. Supraglacial lakes (SGLs) are prevalent features of Antarctic surface hydrology forming mainly on ice shelves (<100 m a.s.l) and efficiently conveying atmospheric energy to the ice interior (Lenaerts et al., 2017; Bell et al., 2018). SGLs on Antarctic Ice Shelves are significant for mass balance given lower surface albedo and drainage-induced collapse of fringing ice shelves and consequent increased discharge from tributary outlet glaciers (Stokes et al., 2019).</p><p>There have been few efforts to quantify the energy exchanges between SGLs, atmosphere and ice to calculate their effects on glacier ablation (Law et al., 2018), although Miles et al. (2016) find that ponds on a debris-covered mountain glacier input large amounts of energy to underlying ice. Therefore, it is proposed that ice-sheet ponds also act as a significant energy exchange surface inputting large amounts of energy to the ice.</p><p>This study aims to code a computationally efficient surface energy balance model (SEB) in Google Earth Engine Editor to quantify how much extra energy is absorbed by SGLs at the during 2019 melt season. The most prolific surface melt is associated with the Antarctic Peninsula, but several East Antarctic ice shelves experience upwards of 60 days/yr of melting (Bell et al., 2018). Near-grounding line negative mass balance of the Nivlisen Ice Shelf (70 <sup>∘</sup>S, 12 <sup>∘</sup>E) in central Dronning Maud Land, East Antarctica, is sufficient to form SGLs and will be used to test SEB accuracy.</p><p>The one-dimensional numerical energy-balance SGL model GlacierLake, developed by Law et al. (2018), will be implemented in Google Earth Engine to code for surface energy exchanges. GlacierLake is most sensitive to the proportion of shortwave radiation absorbed at the surface which indicates that it is responsive to surface energy fluxes and is useful for the purposes of this study. A variety of methods, including NDWI and Principle Components Analysis, will be evaluated for use to classify lake and slush extents.</p><p>Given that it takes 3.4 x 10<sup>5</sup> J/kg of latent heat to melt ice at 0 °C, the volume of liquid water on the Nivlisen ice shelf implies how much atmospheric energy has been transferred to the ice shelf. The modelled quantification of extra energy absorbed by lakes will be compared to the observed water volume on the Nivlisen Ice Shelf to test model accuracy.</p><p>Whilst this study will focus on the Nivlisen Ice Shelf, the SEB model may be applied at pan-Antarctic scales to calculate the ice-sheet wide extra energy absorbed by surface meltwater pooling. A precise quantification of the present impact of energy absorption by lakes on mass balance and dynamics provides a baseline to gauge how meltwater contribution could evolve under atmospheric warming.</p>


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


2016 ◽  
Author(s):  
Nobuhle P. Majozi ◽  
Chris M. Mannaerts ◽  
Abel Ramoelo ◽  
Renaud Mathieu ◽  
Alecia Nickless ◽  
...  

Abstract. Flux tower sites and data are in great demand to provide essential terrestrial climate, water and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based earth observation and monitoring efforts, such as for example assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. Surface energy budget methods for ET estimation rely to a large extend on the basic assumption of a surface energy balance closure, assuming the full conversion of net solar radiation reaching the land surface into soil heat conduction and turbulent fluxes, i.e. the sensible (or convection) and latent heat components of the energy balance. Evapotranspiration is the conversion of the latent heat exchange fraction of the balance. In this paper, the Skukuza flux tower data were analysed in order to verify their use for validation of satellite–based evapotranspiration methods, under development in South Africa.Data series from 2000 until 2014 were used in the analysis. The energy balance ratio (EBR) concept, defined as the ratio between the sum of the turbulent convective and latent heat fluxes and radiation minus soil heat was used. At first typical diurnal patterns of EB partitioning were derived for four different seasons, well illustrating how this savannah-type biome responses to the weather conditions. Also the particular behaviour of the EB components during sunrise and sunset conditions, being important but usually neglected periods of energy transitions and inversions were noted and analysed. Annual estimates of the surface energy balance and its components were generated, including an evaluation of the balance closure. The seasonal variations were also investigated as well as the impact of nocturnal observations on the overall EB behaviour.


2013 ◽  
Vol 17 (11) ◽  
pp. 4625-4639 ◽  
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
A. Tuzet ◽  
K. Laval

Abstract. Potential evaporation (ETP) is a basic input for many hydrological and agronomic models, as well as a key variable in most actual evaporation estimations. It has been approached through several diffusive and energy balance methods, out of which the Penman–Monteith equation is recommended as the standard one. In order to deal with the diffusive approach, ETP must be estimated at a sub-diurnal frequency, as currently done in land surface models (LSMs). This study presents an improved method, developed in the ORCHIDEE LSM, which consists of estimating ETP through an unstressed surface-energy balance (USEB method). The results confirm the quality of the estimation which is currently implemented in the model (Milly, 1992). The ETP underlying the reference evaporation proposed by the Food and Agriculture Organization, FAO, (computed at a daily time step) has also been analysed and compared. First, a comparison for a reference period under current climate conditions shows that USEB and FAO's ETP estimations differ, especially in arid areas. However, they produce similar values when the FAO's assumption of neutral stability conditions is relaxed, by replacing FAO's aerodynamic resistance by that of the model's. Furthermore, if the vapour pressure deficit (VPD) estimated for the FAO's equation, is substituted by ORCHIDEE's VPD or its humidity gradient, the agreement between the daily mean estimates of ETP is further improved. In a second step, ETP's sensitivity to climate change is assessed by comparing trends in these formulations for the 21st century. It is found that the USEB method shows a higher sensitivity than the FAO's. Both VPD and the model's humidity gradient, as well as the aerodynamic resistance have been identified as key parameters in governing ETP trends. Finally, the sensitivity study is extended to two empirical approximations based on net radiation and mass transfer (Priestley–Taylor and Rohwer, respectively). The sensitivity of these ETP estimates is compared to the one provided by USEB to test if simplified equations are able to reproduce the impact of climate change on ETP.


2012 ◽  
Vol 9 (8) ◽  
pp. 11739-11765 ◽  
Author(s):  
J. G. Barr ◽  
J. D. Fuentes ◽  
M. S. DeLonge ◽  
T. L. O'Halloran ◽  
D. Barr ◽  
...  

Abstract. Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL. Forest-atmosphere energy exchanges were quantified with an eddy covariance system deployed on a flux tower. The lateral energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, tidal flows reduced the impact of high radiational loads on the mangrove forest. Including tidal energy advection in the surface energy balance improved the 30-min daytime energy closure from 73% to 82% over the study period. Also, the cumulative sum of energy output improved from 79% to 91% of energy input during the study period. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and regional freshwater management practices.


2020 ◽  
Author(s):  
Xuelong Chen ◽  
Yue Lai ◽  
Yaoming Ma

<p>The spatial-temporal structure of the Planetary Boundary Layer (PBL) over mountainous areas can be strongly modified by topography. The PBL over the mountainous terrain of the Tibetan Plateau (TP) is more complex than that observed over its flat areas. To date, there have been no detailed analyses which have taken into account the topography effects exerted on PBL growth over the Tibetan Plateau (TP). A clear understanding of the processes involved in the PBL growth and depth over the TP’s mountainous areas is therefore long overdue.<br>The PBL in the Himalayan region of the Tibetan Plateau (TP) is important to the study of interaction between the area’s topography and synoptic circulation. This study used radiosonde, in-situ measurements and ECMWF ERA5 reanalysis dataset to investigate the vertical structure of the PBL and the land surface energy balance in the Rongbuk Valley on the north of the central Himalaya, and their association with the Westerlies, which control the climate of the Himalaya in winters. Measurements show that the altitude of the PBL’s top in November was the highest of three intensive observation periods (i.e., June, August and November). The PBLs in November appeared to have been influenced by the Westerlies which prevails in this region during the non-monsoon season. We discovered that the deep PBLs seen in November correlate with the downward transmission of the Westerlies to the valley floor (DTWTV). It was found that DTWTV happened in the direction of southwest when the synoptic wind above the valley ridges height blow from southwest, which is parallel to the valley axis. DTWTV happened in the direction of southwest promotes a stronger near-surface wind, smaller aerodynamic resistance, and larger sensible heat flux, which cause PBLs grow high.</p>


Sign in / Sign up

Export Citation Format

Share Document