Effect of the water layer on seismic noise cross-correlation across the Northeast Atlantic, from Madeira and Canaries to the Atlas-Gibraltar zone

Author(s):  
Graça Silveira ◽  
Joana Carvalho ◽  
Juan Pinzon ◽  
Susana Custódio ◽  
Carlos Corela ◽  
...  

<p>One of the aims of project SIGHT (SeIsmic and Geochemical constraints on the Madeira HoTspot system) is to obtain a 3D model of SV-wave velocities of the crust and upper mantle of the Northeast Atlantic area encompassing Madeira and Canary Islands to the Atlas-Gibraltar zone, using seismic noise cross-correlations in the period range 2-100 s. Ambient noise cross-correlation has been successfully applied in a variety of tectonic environments to image the structure of the Earth subsurface. This technique overcomes some limitations ascribed to source–receiver geometry and sparse and irregular earthquake distribution, allowing to image Earth structure with a resolution that mainly depends on the network design. However, the effect of the water layer in the short period Empirical Green Functions, which are obtained by seismic noise cross-correlation, for interstation paths crossing the ocean is still poorly understood.</p><p>In several studies, it has been observed that the presence of water and sediments is responsible for later wave-train arrivals. Those later arrivals are frequently disregarded when measuring group velocity, either by considering only longer periods or by specifying a given velocity range.</p><p>In this work, we present a systematic study of the influence of the water layer on both vertical and radial synthetic Rayleigh waves, as well as on higher-mode conversion and on the group velocities dispersion measurements.</p><p>We show that although the fundamental mode dominates, the presence of the first overtones at short periods (typically below 8 seconds) cannot be neglected. We also show that specifying a given velocity range when retrieving group velocity can result in a mixture of modes. Our tests reveal that, at short periods, the water has a dominant effect on ocean-continent laterally varying media.</p><p>This is a contribution to projects SIGHT (Ref. PTDC/CTA-GEF/30264/2017) and STORM (Ref. UTAP-EXPL/EAC/0056/2017). The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – IDL.</p>

2021 ◽  
Author(s):  
◽  
Yannik Behr

<p>We use ambient seismic noise to image the crust and uppermost mantle, and to determine the spatiotemporal characteristics of the noise field itself, and examine the way in which those characteristics may influence imaging results. Surface wave information extracted from ambient seismic noise using cross-correlation methods significantly enhances our knowledge of the crustal and uppermost mantle shear-velocity structure of New Zealand. We assemble a large dataset of three-component broadband continuous seismic data from temporary and permanent seismic stations, increasing the achievable resolution of surface wave velocity maps in comparison to a previous study. Three-component data enables us to examine both Rayleigh and Love waves using noise cross-correlation functions. Employing a Monte Carlo inversion method, we invert Rayleigh and Love wave phase and group velocity dispersion curves separately for spatially averaged isotropic shear velocity models beneath the Northland Peninsula. The results yield first-order radial anisotropy estimates of 2% in the upper crust and up to 15% in the lower crust, and estimates of Moho depth and uppermost mantle velocity compatible with previous studies. We also construct a high-resolution, pseudo-3D image of the shear-velocity distribution in the crust and uppermost mantle beneath the central North Island using Rayleigh and Love waves. We document, for the first time, the lateral extent of low shear-velocity zones in the upper and mid-crust beneath the highly active Taupo Volcanic Zone, which have been reported previously based on spatially confined 1D shear-velocity profiles. Attributing these low shear-velocities to the presence of partial melt, we use an empirical relation to estimate an average percentage of partial melt of < 4:2% in the upper and middle crust. Analysis of the ambient seismic noise field in the North Island using plane wave beamforming and slant stacking indicates that higher mode Rayleigh waves can be detected, in addition to the fundamental mode. The azimuthal distributions of seismic noise sources inferred from beamforming are compatible with high near-coastal ocean wave heights in the period band of the secondary microseism (~7 s). Averaged over 130 days, the distribution of seismic noise sources is azimuthally homogeneous, indicating that the seismic noise field is well-suited to noise cross-correlation studies. This is underpinned by the good agreement of our results with those from previous studies. The effective homogeneity of the seismic noise field and the large dataset of noise cross-correlation functions we here compiled, provide the cornerstone for future studies of ambient seismic noise and crustal shear velocity structure in New Zealand.</p>


2020 ◽  
Vol 92 (1) ◽  
pp. 517-527
Author(s):  
Timothy Clements ◽  
Marine A. Denolle

Abstract We introduce SeisNoise.jl, a library for high-performance ambient seismic noise cross correlation, written entirely in the computing language Julia. Julia is a new language, with syntax and a learning curve similar to MATLAB (see Data and Resources), R, or Python and performance close to Fortran or C. SeisNoise.jl is compatible with high-performance computing resources, using both the central processing unit and the graphic processing unit. SeisNoise.jl is a modular toolbox, giving researchers common tools and data structures to design custom ambient seismic cross-correlation workflows in Julia.


2019 ◽  
Vol 217 (3) ◽  
pp. 1524-1542 ◽  
Author(s):  
Maurizio Vassallo ◽  
Raffaella De Matteis ◽  
Antonella Bobbio ◽  
Giuseppe Di Giulio ◽  
Guido Maria Adinolfi ◽  
...  

2011 ◽  
Vol 188 (2) ◽  
pp. 549-558 ◽  
Author(s):  
P. Poli ◽  
H. A. Pedersen ◽  
M. Campillo ◽  

2021 ◽  
Author(s):  
◽  
Yannik Behr

<p>We use ambient seismic noise to image the crust and uppermost mantle, and to determine the spatiotemporal characteristics of the noise field itself, and examine the way in which those characteristics may influence imaging results. Surface wave information extracted from ambient seismic noise using cross-correlation methods significantly enhances our knowledge of the crustal and uppermost mantle shear-velocity structure of New Zealand. We assemble a large dataset of three-component broadband continuous seismic data from temporary and permanent seismic stations, increasing the achievable resolution of surface wave velocity maps in comparison to a previous study. Three-component data enables us to examine both Rayleigh and Love waves using noise cross-correlation functions. Employing a Monte Carlo inversion method, we invert Rayleigh and Love wave phase and group velocity dispersion curves separately for spatially averaged isotropic shear velocity models beneath the Northland Peninsula. The results yield first-order radial anisotropy estimates of 2% in the upper crust and up to 15% in the lower crust, and estimates of Moho depth and uppermost mantle velocity compatible with previous studies. We also construct a high-resolution, pseudo-3D image of the shear-velocity distribution in the crust and uppermost mantle beneath the central North Island using Rayleigh and Love waves. We document, for the first time, the lateral extent of low shear-velocity zones in the upper and mid-crust beneath the highly active Taupo Volcanic Zone, which have been reported previously based on spatially confined 1D shear-velocity profiles. Attributing these low shear-velocities to the presence of partial melt, we use an empirical relation to estimate an average percentage of partial melt of < 4:2% in the upper and middle crust. Analysis of the ambient seismic noise field in the North Island using plane wave beamforming and slant stacking indicates that higher mode Rayleigh waves can be detected, in addition to the fundamental mode. The azimuthal distributions of seismic noise sources inferred from beamforming are compatible with high near-coastal ocean wave heights in the period band of the secondary microseism (~7 s). Averaged over 130 days, the distribution of seismic noise sources is azimuthally homogeneous, indicating that the seismic noise field is well-suited to noise cross-correlation studies. This is underpinned by the good agreement of our results with those from previous studies. The effective homogeneity of the seismic noise field and the large dataset of noise cross-correlation functions we here compiled, provide the cornerstone for future studies of ambient seismic noise and crustal shear velocity structure in New Zealand.</p>


Sign in / Sign up

Export Citation Format

Share Document