scholarly journals Response of the quasi-biennial oscillation to a warming climate in global climate models

Author(s):  
Jadwiga Richter ◽  
Francois Lott ◽  

<p>We compare the response of the quasi-biennial oscillation (QBO) to a warming climate in eleven atmosphere general circulation models that performed time-slice simulations for present-day, doubled,  and  quadrupled CO<sub>2</sub> climates.  No consistency was found among the models for the QBO period response, with the period decreasing by eight months in some models and lengthening by up to thirteen months in others in the doubled CO<sub>2</sub>  simulations.  In the quadruped CO<sub>2</sub> simulations  a reduction in QBO period of 14 months was found in some models, whereas in several others the tropical oscillation no longer resembled the present day QBO, although could still be identified in the deseasonalized zonal mean zonal wind timeseries.  In contrast, all the models projected a decrease in the  QBO amplitude in a warmer climate with the largest relative decrease  near 60 hPa. In simulations with doubled and quadrupled CO<sub>2</sub> the multi-model mean QBO amplitudes decreased by 36\% and 51\%, respectively. Across the  models the differences in the QBO period response were most strongly related to how the gravity wave momentum flux entering the stratosphere and tropical vertical residual velocity responded to the increases in CO<sub>2</sub> amounts. Likewise it was found that the robust decrease in QBO amplitudes was correlated across the models to changes in vertical residual velocity, parameterized gravity wave momentum fluxes, and to some degree the resolved upward wave flux.  We argue that uncertainty in the representation of the parameterized gravity waves is the most likely cause of the spread among the eleven models in the QBO's response to climate change.</p>

2006 ◽  
Vol 19 (16) ◽  
pp. 3882-3901 ◽  
Author(s):  
M. A. Giorgetta ◽  
E. Manzini ◽  
E. Roeckner ◽  
M. Esch ◽  
L. Bengtsson

Abstract The quasi-biennial oscillation (QBO) in the equatorial zonal wind is an outstanding phenomenon of the atmosphere. The QBO is driven by a broad spectrum of waves excited in the tropical troposphere and modulates transport and mixing of chemical compounds in the whole middle atmosphere. Therefore, the simulation of the QBO in general circulation models and chemistry climate models is an important issue. Here, aspects of the climatology and forcing of a spontaneously occurring QBO in a middle-atmosphere model are evaluated, and its influence on the climate and variability of the tropical middle atmosphere is investigated. Westerly and easterly phases are considered separately, and 40-yr ECMWF Re-Analysis (ERA-40) data are used as a reference where appropriate. It is found that the simulated QBO is realistic in many details. Resolved large-scale waves are particularly important for the westerly phase, while parameterized gravity wave drag is more important for the easterly phase. Advective zonal wind tendencies are important for asymmetries between westerly and easterly phases, as found for the suppression of the easterly phase downward propagation. The simulation of the QBO improves the tropical upwelling and the atmospheric tape recorder compared to a model without a QBO. The semiannual oscillation is simulated realistically only if the QBO is represented. In sensitivity tests, it is found that the simulated QBO is strongly sensitive to changes in the gravity wave sources. The sensitivity to the tested range of horizontal resolutions is small. The stratospheric vertical resolution must be better than 1 km to simulate a realistic QBO.


2020 ◽  
Author(s):  
Andrew Bushell ◽  
Francois Lott ◽  

<p>The Stratosphere-troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi) seeks to improve confidence in general circulation and earth system model (GCM and ESM) simulations of the QBO, a prominent feature of middle atmosphere tropical variability first identified nearly sixty years ago. Although only five out of 47 models contributing to the Coupled Model Intercomparison Project Phase 5 (CMIP5) had spontaneous QBOs, simulated QBOs are anticipated to be more common among CMIP6 models as more atmospheric GCMs are able to reproduce the phenomenon, both by ensuring adequate vertical resolution in the stratosphere and by parametrizing accelerations due to subgrid nonorographic gravity waves (NOGWs). The complexity of CMIP6 models and their forcing scenarios, however, is an obstacle to using the CMIP6 multimodel ensemble for analysis of modelling uncertainties that are specific to the QBO and its impacts. The QBOi multimodel ensemble represents an alternative approach in which modelling uncertainties related to the QBO are assessed by performing coordinated experiments with atmospheric GCMs that have simplified external forcings and boundary conditions, designed to characterize QBO representation and its response to idealised future climate scenarios. </p><p>Results are presented from an analysis of QBOs in thirteen atmospheric GCMs forced with both observed and annually repeating sea surface temperatures (SSTs). Mean QBO periods in most of these models are close to, though shorter than, the period of 28 months observed in ERA-Interim. Amplitudes are within ±20% of the observed QBO amplitude at 10hPa, but typically about half of that observed at lower altitudes (50 and 70hPa). For almost all models the oscillation's amplitude profile shows an overall upward shift compared to reanalysis and its meridional extent is too narrow. Asymmetry in the duration of eastward and westward phases is reasonably well captured though not all models replicate the observed slowing as the westward shear descends. Westward phases are generally too weak, and most models have an eastward time mean wind bias throughout the depth of the QBO. Intercycle period variability is realistic and in some models is enhanced in the experiment with observed SSTs compared to the experiment with repeated annual cycle SSTs. Mean periods are also sensitive to this difference between SSTs but only when parametrized NOGW sources are coupled to tropospheric parameters and not prescribed with a fixed value. But, overall, modelled QBOs are very similar whether or not the prescribed SSTs vary interannually. A portrait of the overall ensemble performance is provided by a normalised grading of QBO metrics. To simulate a QBO all but one model used parametrized NOGWs, which provided the majority of the total wave forcing at altitudes above 70hPa in most models. Thus the representation of NOGWs either explicitly or through parametrization is still a major uncertainty underlying QBO simulation in these present-day experiments.</p><p> </p>


2017 ◽  
Author(s):  
Amanda Frigola ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. The Middle Miocene Climate Transition was characterized by major Antarctic ice-sheet expansion and global cooling during the interval ~ 15–13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry and vegetation. Additionally, Antarctic ice volume and geometry, sea-level and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.


2018 ◽  
Vol 31 (22) ◽  
pp. 9151-9173 ◽  
Author(s):  
Richard Davy

Here, we present the climatology of the planetary boundary layer depth in 18 contemporary general circulation models (GCMs) in simulations of the late-twentieth-century climate that were part of phase 5 of the Coupled Model Intercomparison Project (CMIP5). We used a bulk Richardson methodology to establish the boundary layer depth from the 6-hourly synoptic-snapshot data available in the CMIP5 archives. We present an ensemble analysis of the climatological mean, diurnal cycle, and seasonal cycle of the boundary layer depth in these models and compare it to the climatologies from the ECMWF ERA-Interim reanalysis. Overall, we find that the CMIP5 models do a reasonably good job of reproducing the distribution of mean boundary layer depth, although the geographical patterns vary considerably between models. However, the models are biased toward weaker diurnal and seasonal cycles in the boundary layer depth and generally produce much deeper boundary layers at night and during the winter than are found in the reanalysis. These biases are likely to reduce the ability of these models to accurately represent other properties of the diurnal and seasonal cycles, and the sensitivity of these cycles to climate change.


2018 ◽  
Vol 11 (1) ◽  
pp. 200-216 ◽  
Author(s):  
Reza Haji Hosseini ◽  
Saeed Golian ◽  
Jafar Yazdi

Abstract Assessment of climate change in future periods is considered necessary, especially with regard to probable changes to water resources. One of the methods for estimating climate change is the use of the simulation outputs of general circulation models (GCMs). However, due to the low resolution of these models, they are not applicable to regional and local studies and downscaling methods should be applied. The purpose of the present study was to use GCM models' outputs for downscaling precipitation measurements at Amameh station in Latyan dam basin. For this purpose, the observation data from the Amameh station during the 1980–2005 period, 26 output variables from two GCM models, namely, HadCM3 and CanESM2 were used. Downscaling was performed by three data-driven methods, namely, artificial neural network (ANN), nonparametric K-nearest neighborhood (KNN) method, and adaptive network-based fuzzy inference system method (ANFIS). Comparison of the monthly results showed the superiority of KNN compared to the other two methods in simulating precipitation. However, all three, ANN, KNN, and ANFIS methods, showed satisfactory results for both HadDCM3 and CanESM2 GCM models in downscaling precipitation in the study area.


2010 ◽  
Vol 49 (10) ◽  
pp. 2147-2158 ◽  
Author(s):  
Peter Caldwell

Abstract In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California and compared. Several averaging methodologies are considered and all are found to give similar values when the model grid spacing is less than 3°. This suggests that California is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict California precipitation. This appears to be due mainly to the overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge–satellite observations, which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait that does not seem to be tied to model resolution. The GCM daily and interannual variabilities are generally underpredicted.


2014 ◽  
Vol 6 (2) ◽  
pp. 288-299 ◽  
Author(s):  
K. Srinivasa Raju ◽  
D. Nagesh Kumar

Eleven general circulation models/global climate models (GCMs) – BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1, GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3 and UKMO-HADGEM1 – are evaluated for Indian climate conditions using the performance indicator, skill score (SS). Two climate variables, temperature T (at three levels, i.e. 500, 700, 850 mb) and precipitation rate (Pr) are considered resulting in four SS-based evaluation criteria (T500, T700, T850, Pr). The multicriterion decision-making method, technique for order preference by similarity to an ideal solution, is applied to rank 11 GCMs. Efforts are made to rank GCMs for the Upper Malaprabha catchment and two river basins, namely, Krishna and Mahanadi (covered by 17 and 15 grids of size 2.5° × 2.5°, respectively). Similar efforts are also made for India (covered by 73 grid points of size 2.5° × 2.5°) for which an ensemble of GFDL2.0, INGV-ECHAM4, UKMO-HADCM3, MIROC3, BCCR-BCCM2.0 and GFDL2.1 is found to be suitable. It is concluded that the proposed methodology can be applied to similar situations with ease.


2018 ◽  
Vol 11 (4) ◽  
pp. 1607-1626 ◽  
Author(s):  
Amanda Frigola ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. The Middle Miocene Climate Transition was characterized by major Antarctic ice sheet expansion and global cooling during the interval ∼ 15–13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry, and vegetation. Additionally, Antarctic ice volume and geometry, sea level, and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The MMCO and MMG boundary conditions have been successfully applied to the Community Climate System Model version 3 (CCSM3) to provide evidence of their suitability for global climate modeling. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.


Sign in / Sign up

Export Citation Format

Share Document