Transport of Nanoplastic under groundwater aquifer flow and transport conditions

Author(s):  
Sascha Müller ◽  
Tonci Balic-Zunic ◽  
Nicole R. Posth

<p>In terrestrial environments soils are hypothesized sinks for plastic particles. Nonetheless, due to the existence of preferential flow paths as well as a variety of geochemical and microbiological processes, this sink may only be temporary. A vertical translocation from soils to groundwater aquifers eventually occurs along different pathways. In these conditions Nanoplastic transport characteristics are similar to colloidal transport behavior. Therby the magnitude of plastic transport is eventually governed by complex interplay between the particle with its surrounding media (particle-particle, particle-solvent, particle- porous media) masked by different hydro-geochemical and microbiological conditions. The physical entrapment of particles (straining) may be significant when the particle diameter exceeds 5% of the median grain size diameter. Below that size additional electrostatic, van der Waals or steric interaction become increasingly important.</p><p>We present a preliminary dataset on the interaction between Nano-sized Polystyrene (PS) with different surface coatings and a variety of common minerals occurring in groundwater aquifers under the presence of Natural Organic Matter (NOM). The reference aquifer material is based on the Danish subsurface structure of Quaternary and Miocene aquifer material, e.g. quartz, calcite and pyrite among others. In our study, batch scale interactions are up-scaled in column flow and transport experiments, simulating different groundwater aquifer flow conditions in the presence of selected minerals and NOM.</p><p>This aims to clarify transport behavior of plastic pollutant in the subsurface environment. Furthermore, it serves as guide in qualitatively assessing and quantifying the vulnerability of groundwater aquifers to Nanoplastic pollution.</p>

2020 ◽  
Vol 21 (2) ◽  
pp. 204-212
Author(s):  
Heru Sri Naryanto ◽  
Puspa Khaerani ◽  
Syakira Trisnafiah ◽  
Achmad Fakhrus Shomim ◽  
Wisyanto Wisyanto ◽  
...  

ABSTRACTGeostech Building, as an office and laboratory facility, requires a source of clean water from groundwater related to the limited supply of clean water from the PDAM. Due to the needs of freshwater from groundwater origin, data and information are needed regarding the potential groundwater in the area, including aquifer configuration, depth, and groundwater potential. The presence of groundwater is not distributed through every area, and it's related to the geological and geohydrological conditions. One of the geophysical methods that can describe subsurface is 2D geoelectric methods. This method can distinguish and analyze rock types, geological structures, groundwater aquifers, and other important information based on the characteristics of the electricity of rocks by looking at the value of the type of resistance. In this measurement, the Wenner Alpha configuration has been used, where the arrangement of A-B current electrodes and M-N potential electrodes have constant spacing. From the measurement results, it can be interpreted that there is a low resistivity layer containing porous groundwater as an aquifer. Based on regional geological data, it has been estimated that this layer is in the form of sandy tuff (0-1.5 ohm-m). The exploitation of groundwater with drilling is expected to reach the aquifer's upper layer at depth, starting from 11.5-13 meters. The groundwater aquifer thickness cannot be ascertained because of the penetration of the lower depth of 2D geoelectric measurements truncated by the constraint of a maximum stretch of cable. The upper layer of the aquifer contains a turned layer of fine tufa and medium tuff, which is impermeable, coarse tuff, and mixed soil with varying thickness at the upper layer.Keywords: 2D geoelectric, aquifer, potential groundwater, Geostech  ABSTRAKGedung Geostech sebagai sarana perkantoran dan laboratorium memerlukan sumber air bersih dari air tanah terkait dengan terbatasnya suplai air bersih dari PDAM. Kebutuhan air bersih berasal dari air tanah, maka diperlukan data dan informasi mengenai kondisi potensi air tanah di kawasan tersebut termasuk konfigurasi akuifer, kedalaman, dan potensi air tanahnya. Keberadaan air tanah tidaklah merata untuk setiap tempat dan sangat terkait dengan kondisi geologi dan geohidrologinya. Salah satu metode geofisika yang dapat memberikan gambaran kondisi bawah permukaan adalah dengan metode geolistrik 2D. Metode ini dapat membedakan dan menganalisis jenis batuan, struktur geologi, akuifer air tanah, dan informasi penting lainnya berdasarkan sifat kelistrikan batuan dengan melihat nilai tahanan jenisnya. Dalam pengukuran ini digunakan konfigurasi Wenner Alpha, dimana susunan elektroda arus A dan B dan elektroda potensial M dan N mempunyai spasi yang konstan. Dari hasil pengukuran dapat diinterpretasikan adanya lapisan dengan resistivitas rendah yang mengandung air tanah dan bersifat porous sebagai akuifer. Berdasarkan data geologi regional diperkirakan lapisan ini berupa tuf pasiran (0-1,5 ohm-m). Pengambilan air tanah dengan pemboran diperkirakan akan mengenai batas atas lapisan akuifer pada kedalaman 11,5-13 meter. Ketebalan akuifer air tanah tidak bisa dihitung karena penetrasi kedalaman pengukuran geolistrik 2D terbatasi oleh bentangan elektroda di permukaan. Lapisan di atas akuifer merupakan lapisan selang-seling tuf halus dan tuf sedang yang kedap air, tuf kasar, dan pada bagian paling atas merupakan tanah urugan dengan ketebalan bervariasi.Kata kunci: Geolistrik 2D, akuifer, potensi air tanah, Geostech  


2004 ◽  
Vol 3 (2) ◽  
pp. 736-736 ◽  
Author(s):  
Christophe J.G. Darnault ◽  
Tammo S. Steenhuis ◽  
Patricia Garnier ◽  
Young-Jin Kim ◽  
Michael Jenkins ◽  
...  

2011 ◽  
Vol 03 (03) ◽  
pp. 109-131 ◽  
Author(s):  
ROBERT THOMAS PETERSEN ◽  
MATTHEW THOMAS BALHOFF ◽  
STEVEN BRYANT

Accurate predictions of macroscopic multiphase flow properties (relative permeability and capillary pressure) are necessary for modeling flow and transport in subsurface applications, such as hydrocarbon recovery, carbon sequestration and nuclear waste storage. These properties are usually measured experimentally, but pore-scale network modeling has become an efficient alternative for understanding fundamental flow behavior and predicting macroscopic properties. In many cases, network modeling gives excellent agreement with experiment by using models physically representative of real media. Void space within a rock sample can be extracted from high resolution images and converted to a topologically equivalent network of pores and throats. Multiphase fluid transport is then modeled in the network and macroscopic properties extracted from the model. Advancements continue to be made in making multiphase network models (both quasistatic and dynamic) predictive, but one limitation is that arbitrary (e.g., constant pressure) boundary conditions are usually assumed; they do not reflect the local saturations and pressure distributions that are affected by flow and transport in the surrounding media. In this work we demonstrate that transport behavior at the pore scale, and therefore, upscaled macroscopic properties are directly affected by the boundary conditions. Pore-scale drainage in 2D quasi-static networks is modeled by direct coupling to other pore-network models so that the boundary conditions reflect local variations of transport behavior in the surrounding media. Phase saturations are coupled at model boundaries to ensure continuity between adjacent models. Macroscopic petrophysical properties are shown to be largely dependent upon the surrounding media, which are manifested in the form of boundary conditions. The predictive ability of network simulations is thus improved using the novel network coupling scheme.


1987 ◽  
Vol 53 (5) ◽  
pp. 996-1002 ◽  
Author(s):  
R K Jain ◽  
G S Sayler ◽  
J T Wilson ◽  
L Houston ◽  
D Pacia

2020 ◽  
Vol 21 (2) ◽  
pp. 236-243
Author(s):  
Dian Purwitasari Dewanti ◽  
Wiharja Wiharja ◽  
Muhammad Hanif ◽  
Rudi Nugroho

ABSTRACTGeostech Building, as an office and laboratory facility, requires a source of clean water from groundwater related to the limited supply of clean water from the PDAM. Due to the needs of freshwater from groundwater origin, data and information are needed regarding the potential groundwater in the area, including aquifer configuration, depth, and groundwater potential. The presence of groundwater is not distributed through every area, and it's related to the geological and geohydrological conditions. One of the geophysical methods that can describe subsurface is 2D geoelectric methods. This method can distinguish and analyze rock types, geological structures, groundwater aquifers, and other important information based on the characteristics of the electricity of rocks by looking at the value of the type of resistance. In this measurement, the Wenner Alpha configuration has been used, where the arrangement of A-B current electrodes and M-N potential electrodes have constant spacing. From the measurement results, it can be interpreted that there is a low resistivity layer containing porous groundwater as an aquifer. Based on regional geological data, it has been estimated that this layer is in the form of sandy tuff (0-1.5 ohm-m). The exploitation of groundwater with drilling is expected to reach the aquifer's upper layer at depth, starting from 11.5-13 meters. The groundwater aquifer thickness cannot be ascertained because of the penetration of the lower depth of 2D geoelectric measurements truncated by the constraint of a maximum stretch of cable. The upper layer of the aquifer contains a turned layer of fine tufa and medium tuff, which is impermeable, coarse tuff, and mixed soil with varying thickness at the upper layer.Keywords: 2D geoelectric, aquifer, potential groundwater, Geostech  ABSTRAKGedung Geostech sebagai sarana perkantoran dan laboratorium memerlukan sumber air bersih dari airtanah terkait dengan terbatasnya suplai air bersih dari PDAM. Kebutuhan air bersih berasal dari airtanah, maka diperlukan data dan informasi mengenai kondisi potensi airtanah di kawasan tersebut termasuk konfigurasi akuifer, kedalaman, dan potensi airtanahnya. Keberadaan airtanah tidaklah merata untuk setiap tempat dan sangat terkait dengan kondisi geologi dan geohidrologinya. Salah satu metode geofisika yang dapat memberikan gambaran kondisi bawah permukaan adalah dengan metode geolistrik 2D. Metode ini dapat membedakan dan menganalisis jenis batuan, struktur geologi, akuifer airtanah, dan informasi penting lainnya berdasarkan sifat kelistrikan batuan dengan melihat nilai tahanan jenisnya. Dalam pengukuran ini digunakan konfigurasi Wenner Alpha, dimana susunan elektroda arus A dan B dan elektroda potensial M dan N mempunyai spasi yang konstan. Dari hasil pengukuran dapat diinterpretasikan adanya lapisan dengan resistivitas rendah yang mengandung airtanah dan bersifat porous sebagai akuifer. Berdasarkan data geologi regional diperkirakan lapisan ini berupa tuf pasiran (0-1,5 ohm-m). Pengambilan airtanah dengan pemboran diperkirakan akan mengenai batas atas lapisan akuifer pada kedalaman 11,5-13 meter. Ketebalan akuifer airtanah tidak bisa dihitung karena penetrasi kedalaman pengukuran geolistrik 2D terbatasi oleh bentangan elektroda di permukaan. Lapisan di atas akuifer merupakan lapisan selang-seling tuf halus dan tuf sedang yang kedap air, tuf kasar, dan pada bagian paling atas merupakan tanah urugan dengan ketebalan bervariasi.Kata kunci: Geolistrik 2D, akuifer, potensi airtanah, Geostech 


2004 ◽  
Vol 3 (1) ◽  
pp. 262 ◽  
Author(s):  
Christophe J. G. Darnault ◽  
Tammo S. Steenhuis ◽  
Patricia Garnier ◽  
Young-Jin Kim ◽  
Michael B. Jenkins ◽  
...  

2004 ◽  
Vol 3 (2) ◽  
pp. 736-736 ◽  
Author(s):  
C. J.G. Darnault ◽  
T. S. Steenhuis ◽  
P. Garnier ◽  
Y.-J. Kim ◽  
M. Jenkins ◽  
...  

2000 ◽  
Vol 43 (3-4) ◽  
pp. 211-238 ◽  
Author(s):  
Robert G. McLaren ◽  
Peter A. Forsyth ◽  
Edward A. Sudicky ◽  
Joel E. VanderKwaak ◽  
Franklin W. Schwartz ◽  
...  

2020 ◽  
Author(s):  
Ryan Stewart ◽  
Jesse Radolinski

<p>Many soil physical models assume a homogeneous domain and equilibrium conditions, even as decades of evidence have suggested that such states are rarely present in the real world. Instead, natural soils tend to be characterized by physical heterogeneity (e.g., macropores) and non-equilibrium movement of water, solutes and gases (e.g., preferential flow and transport), making it critical to develop physically realistic yet parsimonious descriptors of these processes. In this presentation we discuss recent advances using multi-domain descriptions of soils to model preferential flow and subsurface contaminant movement under field conditions. Here we emphasize the use of simplifying assumptions and straightforward parameterizations, and consider whether those factors constrain the ability of such models to realistically represent underlying physical mechanisms. We also discuss results of an innovative field experiment aimed at constraining macropore porosity, which is a key yet highly uncertain factor in such multi-domain models. Finally, we consider the relevant scales of these multi-domain models, and whether such approaches merit consideration in larger (e.g., hillslope- or catchment-scale) simulations.    </p>


Sign in / Sign up

Export Citation Format

Share Document