scholarly journals The tectonic and volcanic evolution of the Mangatolu Triple Junction

Author(s):  
Rebecca Mensing ◽  
Margaret Stewart ◽  
Mark Hannington ◽  
Alan Baxter ◽  
Dorothee Mertmann

<p>The Mangatolu Triple Junction (MTJ) is an intraoceanic back-arc spreading center that is host to at least 3 distinct hydrothermal systems. It is located in the NE Lau Basin, which opened due to rollback of the Pacific plate along the Tonga-Kermadec trench. At the MTJ, three spreading centers meet in a ridge-ridge-ridge (RRR)-type triple junction separating the Tonga plate in the east, the Niuafo’ou microplate in the southwest, and an unnamed microplate in the north. The MTJ is directly linked to the formation and evolution of the Northeast Lau microplate mosaic, as plate fragmentation inevitably results in the formation of triple junctions, but it remains unclear whether the spreading centers are the drivers of plate fragmentation or a consequence of stress relocation related to microplate rotation. Detailed investigation of the geology and structural setting of the MTJ therefore provides valuable insight into the development in the northeast Lau Basin. Here we present the first comprehensive 1:200,000 geological map of the MTJ, based on a compilation of marine geophysical data (hydroacoustics, magnetics, and gravity) derived from 7 research cruises that have investigated the region between 2004 and 2018. Analysis of the mapped geological formations at the MTJ shows the importance of relict arc crust originating from the Tofua Arc in the architecture of the triple junction, which includes three stages of back-arc crust development and extensive off-axis volcanism. The spreading centers along each arm of the MTJ exploit pre-existing crustal weaknesses, interpreted to have formed during initial Lau Basin opening. A reconstruction of the basin opening, based on the mapped features and published spreading rates, revealed that initiation of the MTJ commenced approximately 180,000 years ago, consistent with the very recent and ongoing dynamic evolution of the NE Lau Basin and emerging microplate mosaic. Intersecting fabrics indicate sequential evolution of the 3 arms of the triple junction, with extension along the northeast arm dominant in the early history and more recent extension along the southern and western arms. The results of this study contribute to our growing understanding of the tectonic framework of the northeast Lau Basin and the role of triple junctions in microplate formation.</p>

Author(s):  
Nicole S. Keller ◽  
Richard J. Arculus ◽  
Jörg Hermann ◽  
Simon Richards
Keyword(s):  

2020 ◽  
Author(s):  
Florian Schmid ◽  
Heidrun Kopp ◽  
Michael Schnabel ◽  
Anke Dannowski ◽  
Ingo Heyde ◽  
...  

<p>The northeastern Lau Basin is one of the fastest opening and magmatically most active back-arc regions on Earth. Although the current pattern of plate boundaries and motions in this complex mosaic of microplates is fairly well understood, the structure and evolution of the back-arc crust are not. We present refraction seismic, multichannel seismic and gravity data from a 300 km long east-west oriented transect crossing the Niuafo’ou Microplate (back-arc), the Fonualei Rift and Spreading Centre (FRSC) and the Tofua Volcanic Arc at 17°20’S. Our P wave tomography model shows strong lateral variations in the thickness and velocity-depth distribution of the crust. The thinnest crust is present in the Fonualei Rift and Spreading Center, suggesting active seafloor spreading there. In the much thicker crust of the volcanic arc we identify a region of anomalously low velocities, indicative of partial melts. Surprisingly, the melt reservoir is located at ~17 km distance to the volcanic front, supporting the hypothesis that melts are deviated from the volcanic arc towards the FRSC in sub-crustal domains. We identify two distinct regions in the back-arc crust, representing different opening phases of the northeastern Lau Basin. During initial extension, likely dominated by rifting, crust of generally lower upper-crustal velocities formed. During an advanced opening phase, likely dominated by seafloor spreading, crust of higher upper-crustal velocities formed and is now up to 11 km thick. This thickening is the result of magmatic underplating, which is supported by elevated upper mantle temperatures in this region.</p>


1994 ◽  
Vol 40 (8) ◽  
pp. 690-697 ◽  
Author(s):  
Pascale Durand ◽  
Afeda Benyagoub ◽  
Daniel Prieur

Sulfur-oxidizing bacteria (n = 161) were enriched and isolated from samples of vent water, invertebrates, and chimney rocks collected at two deep-sea hydrothermal vents (2000 m) in back-arc basins from the southwestern Pacific: the North Fiji Basin and the Lau Basin. Several types of heterotrophic sulfur-oxidizing bacteria were repeatedly isolated. They oxidized thiosulfate either to sulfate (acid producing) or to polythionate (base producing). In most of the acid-producing cultures, thiosulfate was transitorily oxidized to polythionate. All of the bacteria were Gram negative, 37% were fermentative, and 88% were denitrifiers or nitrate reducers. Numerical taxonomy and analysis of the G+C content showed that they belong to several genera including Pseudomonas, Acinetobacter, and Vibrio.Key words: hydrothermal vent, culturable thiosulfate-oxidizing bacteria, numerical taxonomy.


1991 ◽  
Vol 91 (3) ◽  
pp. 227-256 ◽  
Author(s):  
T.L. Vallier ◽  
G.A. Jenner ◽  
F.A. Frey ◽  
J.B. Gill ◽  
A.S. Davis ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Toshihiro Yoshimura ◽  
Shigeyuki Wakaki ◽  
Tsuyoshi Ishikawa ◽  
Toshitaka Gamo ◽  
Daisuke Araoka ◽  
...  

Variations in the stable isotopic composition of seawater Sr (δ88Sr) is a new tool for estimating the rates of global carbonate sedimentation over geologic time, yet the isotope compositions of the major sources and sinks of Sr to the world oceans are still in need of further constraint. We report δ88Sr values of vent fluids from arc/back-arc seafloor hydrothermal systems in the western Pacific. In the sediment-starved hydrothermal fields of the Manus Basin, Izu-Bonin Arc, and Mariana Trough, the δ88Sr values of end-member fluids for each site showed little variation (0.29–0.30‰) and were close to the average value of oceanic volcanic rocks, reflecting dissolved Sr sourced from host rocks. Chlorine-depleted fluids from phase-separated hydrothermal systems in the North Fiji Basin had the end-member δ88Sr values of 0.26, 0.28, and 0.29‰. Thus, both sediment-starved and phase-separated vent fluids had the end-member δ88Sr values indistinguishable from or very close to the range of oceanic volcanic rocks. Therefore, the δ88Sr compositions in these hydrothermal sites are controlled predominantly by Sr sourced from host rock with a small influence from secondary mineral precipitation/re-dissolution. Fluids from the sediment-hosted hydrothermal fields of the Okinawa Trough, however, were characterized by low δ88Sr values of approximately 0.22‰ and high 87Sr/86Sr ratios, indicating interactions with sedimentary carbonates. As for the modern oceanic δ88Sr budget, the sediment-hosted sites lower the global hydrothermal δ88Sr. Since both sediment-starved and -hosted hydrothermal systems provide a long-term control on the global Sr cycle, the end-member δ88Sr value is an important constraint on the evolution of Sr cycling in past oceans.


2017 ◽  
Vol 18 (6) ◽  
pp. 2240-2274 ◽  
Author(s):  
Melissa O. Anderson ◽  
William W. Chadwick ◽  
Mark D. Hannington ◽  
Susan G. Merle ◽  
Joseph A. Resing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document