Coordinated efforts in tsunami hazard and risk analyses in Europe and link to the Global Tsunami Model network initiative

Author(s):  
Finn Løvholt ◽  
Jörn Behrens ◽  
Stefano Lorito ◽  
Andrey Babeyko

<p>The tsunami disasters of 2004 in the Indian Ocean and of 2011 along the Tohoku coast of Japan revealed severe gaps between the anticipated risk and consequences, with resulting loss of life and property. A similar observation is also relevant for the smaller, yet disastrous, tsunamis with unusual source characteristics such as the recent events in Palu Bay and Sunda Strait in 2018. The severe consequences were underestimated in part due to the lack of rigorous and accepted hazard analysis methods and large uncertainty in forecasting the tsunami sources. Population response to small recent tsunamis in the Mediterranean also revealed a lack of preparedness and awareness. While there is no absolute protection against large tsunamis, a more accurate analysis of the potential risk can help to minimize losses. The tsunami community has made significant progress in understanding tsunami hazard from seismic sources. However, this is only part of the inputs needed to effectively manage tsunami risk, which should be understood more holistically, including non-seismic sources, vulnerability in different dimensions and the overall societal effects, in addition to its interaction with other hazards and cascading effects. Moreover, higher standards need to be achieved to manage and quantify uncertainty, which govern our basis for tsunami risk decision making. Hence, a collective community effort is needed to effectively handle all these challenges across disciplines and trades, from researchers to stakeholders. To coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) the Global Tsunami Model network (GTM) was initiated in 2015 towards enhancing our understanding of tsunami hazard and risk from a local to global scale. Here, we focus on coordinated European efforts, sharing the same goals as GTM, towards improving standards and best practices for tsunami risk reduction. The networking initiative, AGITHAR (Accelerating Global science In Tsunami HAzard and Risk Analysis), is a European COST Action, aims to assess, benchmark, improve, and document methods to analyse tsunami hazard and risk, understand and communicate the uncertainty involved, and interact with stakeholders in order to understand the societal needs and thus contribute to their effort to minimize losses. In this presentation, we provide an overview of the suite of methodologies used for tsunami hazard and risk analysis, review state of the art in global tsunami hazard and risk analysis, dating back to results from the Global Risk Model in 2015, and highlight possible gaps and challenges. We further discuss how AGITHAR and GTM will address how to tackle these challenges, and finally, discuss how global and regional structures such as the European Plate Observing System (EPOS) and the UNDRR Global Risk Assessment Framework (GRAF) can facilitate and mutually benefit towards an integrated framework of services aiding improved understanding of multiple hazards.</p>

2021 ◽  
Vol 9 ◽  
Author(s):  
Jörn Behrens ◽  
Finn Løvholt ◽  
Fatemeh Jalayer ◽  
Stefano Lorito ◽  
Mario A. Salgado-Gálvez ◽  
...  

Tsunamis are unpredictable and infrequent but potentially large impact natural disasters. To prepare, mitigate and prevent losses from tsunamis, probabilistic hazard and risk analysis methods have been developed and have proved useful. However, large gaps and uncertainties still exist and many steps in the assessment methods lack information, theoretical foundation, or commonly accepted methods. Moreover, applied methods have very different levels of maturity, from already advanced probabilistic tsunami hazard analysis for earthquake sources, to less mature probabilistic risk analysis. In this review we give an overview of the current state of probabilistic tsunami hazard and risk analysis. Identifying research gaps, we offer suggestions for future research directions. An extensive literature list allows for branching into diverse aspects of this scientific approach.


2020 ◽  
Author(s):  
Joern Behrens ◽  
Inigo Aniel-Quiroga ◽  
Sebastiano D'Amico ◽  
Frederic Dias ◽  
Ira Didenkulova ◽  
...  

<p>Recent tsunami disasters revealed severe gaps between the anticipated level of hazard and the true extent of the event, with resulting loss of life and property. The severe consequences were underestimated in part due to the lack of rigorous and accepted hazard analysis methods and large uncertainty in forecasting the tsunami source mechanism and strength. Uncertainty and underestimation of the hazard and risk resulted in insufficient preparedness measures. While there is no absolute protection against disasters of the scale of mega tsunamis, a more accurate analysis of the potential risk can help to minimize losses from tsunami.<br>After the major events in 2004 and 2011 many new initiatives originated novel methods for tsunami hazard and risk analysis. However, rigorous performance assessment and evaluation – with respect to guiding principles in tsunami hazard and risk analysis – has not been conducted. In particular, comprehensive uncertainty assessments and related standards are required in order to implement more robust and reliable hazard analysis strategies and, ultimately, better mitigate tsunami impact. This is the core challenge of the proposed COST Action Accelerating Global science In Tsunami HAzard and Risk analysis (AGITHAR).<br>In our presentation we will demonstrate first results of the Action, assessing research gaps, open questions, and a very coarse roadmap for future research.</p>


2021 ◽  
pp. 123-136
Author(s):  
Bruce Lyon ◽  
Georgi Popov

Author(s):  
Radhia Maya R. P. ◽  
Dani Nasirul H. ◽  
Putri Ayuni Alayyannur ◽  
Tjipto Suwandi ◽  
Rizky Agung Firnando

2021 ◽  
Vol 10 (1) ◽  
pp. 3438-3448
Author(s):  
T.D.C. Pushpakumara ◽  
◽  
Shohan Gamlath ◽  

Tsunami is a coastal hazard which occur due to undersea earthquakes, Meteorite falls, volcanic eruptions or even nuclear weapon operations. The tsunami hazard which occurred in December 2004 was generated due to an undersea earthquake 400m west of northern Sumatra and it inundated coastal areas of Indonesia, Sri Lanka, Thailand and India. This hazard became one of the worst disasters in the history resulting in over thirty thousand fatalities and over seventy thousand house damage in Sri Lanka. This study is focused towards creation of GIS based Tsunami risk map for Galle city which was badly hit by the 2004 Tsunami. Tsunami vulnerability was assessed using weighted overlay spatial method with input parameters of population density, sex ratio, age ratio, disability ratio and damaged building ratio. Tsunami hazard map was developed based on tsunami inundation map which was published by Coastal research and design, costal conservation and resource management department with assistant from Disaster management centre using the Cornell Multigrid Coupled Tsunami Model (COMCOT). Vulnerable and hazard maps were analysed and incorporated to develop final risk map using GIS tool. Keywords GIS; Tsunami Inundation Map; Tsunami Risk Map; Vulnerability; Disaster


2021 ◽  
Author(s):  
Jack Baker ◽  
Brendon Bradley ◽  
Peter Stafford

Seismic hazard and risk analyses underpin the loadings prescribed by engineering design codes, the decisions by asset owners to retrofit structures, the pricing of insurance policies, and many other activities. This is a comprehensive overview of the principles and procedures behind seismic hazard and risk analysis. It enables readers to understand best practises and future research directions. Early chapters cover the essential elements and concepts of seismic hazard and risk analysis, while later chapters shift focus to more advanced topics. Each chapter includes worked examples and problem sets for which full solutions are provided online. Appendices provide relevant background in probability and statistics. Computer codes are also available online to help replicate specific calculations and demonstrate the implementation of various methods. This is a valuable reference for upper level students and practitioners in civil engineering, and earth scientists interested in engineering seismology.


Sign in / Sign up

Export Citation Format

Share Document