scholarly journals Surface Electrical Resistivity Tomography: a non-invasive tool to assess the compaction in paddy soils

Author(s):  
Bianca Ortuani ◽  
Camilla Negri ◽  
Arianna Facchi

<p>Soil compaction has direct effects on soil physical properties (increase in soil strength, bulk density, decrease in total porosity, soil aeration, water infiltration rate, and saturated hydraulic conductivity) often reducing root penetration and plant growth, thereby causing a reduction of soil productivity. However, the presence of compacted layers in rice paddy fields increases the efficiency of the traditional flooding irrigation method. For this reason, the use of monitoring tools to detect depth,  thickness and lateral continuity of compacted soil layers in paddy fields is of crucial importance for the assessment of their irrigation efficiency. Electrical Resistivity Tomography (ERT) is a non-invasive geophysical method which allows to detect soil horizons with different degrees of compaction. Particularly, arrays constituted of short electrodes spaced a few centimeters can be used to investigate with high vertical resolution the soil profile.</p><p>In a sandy loam paddy field located in the Lomellina region (PV; RISTEC project, RDP-EU, Lombardy Region), a surface ERT survey was conducted in February 2019 to verify the effectiveness of this technique in assessing soil compaction. The ERT was carried out with Wenner arrays of 48 electrodes spaced 0.1 m along a 5 m transect, to investigate the soil profile up to about 1 m depth in proximity of a soil profile trench dug for soil description and sampling. The results of the traditional soil survey (accurate description of soil horizons, including the compacted layer) were considered as reference data to evaluate the reliability of ERT results. During the ERT survey, soil samples were collected at different depths and distances along the ERT transect: texture, bulk density and porosity were successively measured in laboratory. Moreover, the volumetric soil water content was measured with a probe (ML2 ThetaProbe, Delta-T Devices). Main results show that the correlation between electrical resistivity (ER) and bulk density, soil porosity and volumetric water content is well in line with those observed in recent studies. Data points in the scatter plots are clustered based on the bulk density values; particularly, the cluster corresponding to high bulk density values (i.e. compacted soil) includes the measurement points at the depth where the ERT image shows a greater ER gradient. This depth also corresponds to the compacted layer observed during the investigation of soil profile with traditional methods. These results confirm that compacted layers can be effectively detected in ERT images by identifying depths characterized by higher ER gradients in soils with a relatively homogeneous soil texture. Consequently, an integrated approach combining surface ERT and soil sampling with a hand auger at a few depths to check the texture homogeneity and eventually collect a few soil samples for further analysis (e.g., bulk density, volumetric water content, soil hydraulic conductivity) could be explored to assess the presence and continuity of compacted layers in paddy soils, instead of intensive and extremely invasive surveys.</p>

2018 ◽  
Vol 3 (1) ◽  
pp. 378-385 ◽  
Author(s):  
Aitor García-Tomillo ◽  
Tomás de Figueiredo ◽  
Jorge Dafonte Dafonte ◽  
Arlindo Almeida ◽  
Antonio Paz-González

Abstract Soil compaction is a serious problem, which is aggravated due to its difficulty to locate and reverse. Electrical resistivity tomography (ERT) is a non-invasive geophysical method that can be used to identify compacted areas, soil horizon thickness and assess soil physical properties. This study assesses the relationship between ERT and soil compaction. Data were collected on a 4-m transect in a fallow plot located at Braganca (Portugal). Measurements were performed before and after tillage and tractor passage. Soil samples at different depths (0-0.05, 0.05-0.1 and 0.1-0.2 m depth) were taken to determine: soil bulk density, porosity, saturated hydraulic conductivity and soil water content. The effect of tillage and tractor passage was more significant on the first 0.05 m depth. In the wheel track areas, ERT suffered a reduction of about 40%, saturated hydraulic conductivity decreased by 70% and bulk density increased by 24%. These results proved that ERT can be a useful tool for assessing soil compaction.


2013 ◽  
Vol 6 ◽  
pp. ASWR.S12306 ◽  
Author(s):  
Alexis Mojica ◽  
Irving Díaz ◽  
Carlos A. Ho ◽  
Fred Ogden ◽  
Reinhardt Pinzón ◽  
...  

The present investigation was focused on the variations in rainwater infiltration experienced by soils of Gamboa zone (Panama Canal Watershed) during various seasons of the year, employing a time-lapse analysis of electrical resistivity tomography (ERT). In 2009, a total of 3 geoelectrical tests were undertaken during the dry, transition and rainy seasons across a profile 47 m in length, strategically distributed on site. The results obtained in this study showed strong variations in calculated resistivity between these seasons, taking the dry season as a reference with decreases and increases of percent difference of resistivity between -20% and -100%, and between 50% and 100%, respectively. These decreases, when displayed through a sequence of time-lapse images, reveal a superficial extension of the water content variations along the entire profile, as well as strong inversion artifacts showing false increases of calculated electrical resistivity. Decreases are the product of the rainfall increase obtained in this type of tropical environment; permanent conductive anomalies in 3 tests are associated with the streams close to the study site. The results of this work were compared with a simulation resulting from a series of bidimensional models applied to the 3 studies evaluated: dry, transition and rainy seasons.


2007 ◽  
Vol 6 (2) ◽  
pp. 123-132 ◽  
Author(s):  
Joerg Rings ◽  
Alexander Scheuermann ◽  
Kwasi Preko ◽  
Christian Hauck

Sign in / Sign up

Export Citation Format

Share Document