scholarly journals Study of Seasonal Rainfall Infiltration via Time-Lapse Surface Electrical Resistivity Tomography: Case Study of Gamboa Area, Panama Canal Watershed

2013 ◽  
Vol 6 ◽  
pp. ASWR.S12306 ◽  
Author(s):  
Alexis Mojica ◽  
Irving Díaz ◽  
Carlos A. Ho ◽  
Fred Ogden ◽  
Reinhardt Pinzón ◽  
...  

The present investigation was focused on the variations in rainwater infiltration experienced by soils of Gamboa zone (Panama Canal Watershed) during various seasons of the year, employing a time-lapse analysis of electrical resistivity tomography (ERT). In 2009, a total of 3 geoelectrical tests were undertaken during the dry, transition and rainy seasons across a profile 47 m in length, strategically distributed on site. The results obtained in this study showed strong variations in calculated resistivity between these seasons, taking the dry season as a reference with decreases and increases of percent difference of resistivity between -20% and -100%, and between 50% and 100%, respectively. These decreases, when displayed through a sequence of time-lapse images, reveal a superficial extension of the water content variations along the entire profile, as well as strong inversion artifacts showing false increases of calculated electrical resistivity. Decreases are the product of the rainfall increase obtained in this type of tropical environment; permanent conductive anomalies in 3 tests are associated with the streams close to the study site. The results of this work were compared with a simulation resulting from a series of bidimensional models applied to the 3 studies evaluated: dry, transition and rainy seasons.

2020 ◽  
Vol 25 (2) ◽  
pp. 199-209
Author(s):  
Christopher H. Conaway ◽  
Cordell D. Johnson ◽  
Thomas D. Lorenson ◽  
Merritt Turetsky ◽  
Eugénie Euskirchen ◽  
...  

Surface-based 2D electrical resistivity tomography (ERT) surveys were used to characterize permafrost distribution at wetland sites on the alluvial plain north of the Tanana River, 20 km southwest of Fairbanks, Alaska, in June and September 2014. The sites were part of an ecologically-sensitive research area characterizing biogeochemical response of this region to warming and permafrost thaw, and the site contained landscape features characteristic of interior Alaska, including thermokarst bog, forested permafrost plateau, and a rich fen. The results show how vegetation reflects shallow (0–10 m depth) permafrost distribution. Additionally, we saw shallow (0–3 m depth) low resistivity areas in forested permafrost plateau potentially indicating the presence of increased unfrozen water content as a precursor to ground instability and thaw. Time-lapse study from June to September suggested a depth of seasonal influence extending several meters below the active layer, potentially as a result of changes in unfrozen water content. A comparison of several electrode geometries (dipole-dipole, extended dipole-dipole, Wenner-Schlumberger) showed that for depths of interest to our study (0–10 m) results were similar, but data acquisition time with dipole-dipole was the shortest, making it our preferred geometry. The results show the utility of ERT surveys to characterize permafrost distribution at these sites, and how vegetation reflects shallow permafrost distribution. These results are valuable information for ecologically sensitive areas where ground-truthing can cause excessive disturbance. ERT data can be used to characterize the exact subsurface geometry of permafrost such that over time an understanding of changing permafrost conditions can be made in great detail. Characterizing the depth of thaw and thermal influence from the surface in these areas also provides important information as an indication of the depth to which carbon storage and microbially-mediated carbon processing may be affected.


2017 ◽  
Vol 544 ◽  
pp. 195-209 ◽  
Author(s):  
Thomas Zieher ◽  
Gerhard Markart ◽  
David Ottowitz ◽  
Alexander Römer ◽  
Martin Rutzinger ◽  
...  

2019 ◽  
Author(s):  
Benjamin Mary ◽  
Luca Peruzzo ◽  
Jacopo Boaga ◽  
Nicola Cenni ◽  
Myriam Schmutz ◽  
...  

Abstract. This paper presents a time-lapse application of electrical methods (Electrical Resistivity Tomography – ERT – and Mise-à-la-Masse – MALM) for monitoring plant roots and their activity (root water uptake) during a controlled infiltration experiment. The use of non-invasive geophysical monitoring is of increasing interest as these techniques provide time-lapse imaging of processes that otherwise can only be measured at few specific spatial locations. The experiment here described was conducted in a vineyard in Bordeaux (France) and was focused on the behaviour of two neighbouring grapevines. The joint application of ERT and MALM has several advantages. While ERT in time-lapse mode is sensitive to changes in soil electrical resistivity and thus to the factors controlling it (mainly soil water content, in this context), MALM uses DC current injected in a tree stem to image where the plant-root system is in effective electrical contact with the soil at locations that are likely to be the same where root water uptake (RWU) takes place. Thus ERT and MALM provide complementary information about the root structure and activity. The experiment shows that the region of likely electrical current sources produced by MALM does not change significantly during the infiltration study time in spite of the strong changes of electrical resistivity caused by changes in soil water content. This fact, together with the evidence that current injection in the soil produces totally different patterns, corroborates the idea that this application of MALM highlights the active root density in the soil. When considering the electrical resistivity changes (as measured by ERT) inside the stationary volume of active roots delineated by MALM, the overall tendency is towards a resistivity increase, which can be linked to a decrease in soil water content caused by root water uptake. On the contrary, when considering the soil volume outside the MALM-derived root water uptake region, the electrical resistivity tends to decrease as an effect of soil water content increase caused by the infiltration. The results are particularly promising, and the method can be applied to a variety of scales including the laboratory scale where direct evidence of roots structure and root water uptake can help corroborate the approach. Once fully validated, the joint use of MALM and ERT can be used as a valuable tool to study the activity of roots under a wide variety of field conditions.


SOIL ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 95-114 ◽  
Author(s):  
Benjamin Mary ◽  
Luca Peruzzo ◽  
Jacopo Boaga ◽  
Nicola Cenni ◽  
Myriam Schmutz ◽  
...  

Abstract. This paper presents a time-lapse application of electrical methods (electrical resistivity tomography, ERT; and mise-à-la-masse, MALM) for monitoring plant roots and their activity (root water uptake) during a controlled infiltration experiment. The use of non-invasive geophysical monitoring is of increasing interest as these techniques provide time-lapse imaging of processes that otherwise can only be measured at few specific spatial locations. The experiment here described was conducted in a vineyard in Bordeaux (France) and was focused on the behaviour of two neighbouring grapevines. The joint application of ERT and MALM has several advantages. While ERT in time-lapse mode is sensitive to changes in soil electrical resistivity and thus to the factors controlling it (mainly soil water content, in this context), MALM uses DC current injected into a tree stem to image where the plant root system is in effective electrical contact with the soil at locations that are likely to be the same where root water uptake (RWU) takes place. Thus, ERT and MALM provide complementary information about the root structure and activity. The experiment shows that the region of likely electrical current sources produced by MALM does not change significantly during the infiltration time in spite of the strong changes of electrical resistivity caused by changes in soil water content. Ultimately, the interpretation of the current source distribution strengthened the hypothesis of using current as a proxy for root detection. This fact, together with the evidence that current injection in the soil and in the stem produces totally different voltage patterns, corroborates the idea that this application of MALM highlights the active root density in the soil. When considering the electrical resistivity changes (as measured by ERT) inside the stationary volume of active roots delineated by MALM, the overall tendency is towards a resistivity increase during irrigation time, which can be linked to a decrease in soil water content caused by root water uptake. On the contrary, when considering the soil volume outside the MALM-derived root water uptake region, the electrical resistivity tends to decrease as an effect of soil water content increase caused by the infiltration. The use of a simplified infiltration model confirms at least qualitatively this behaviour. The monitoring results are particularly promising, and the method can be applied to a variety of scales including the laboratory scale where direct evidence of root structure and root water uptake can help corroborate the approach. Once fully validated, the joint use of MALM and ERT can be used as a valuable tool to study the activity of roots under a wide variety of field conditions.


2009 ◽  
Vol 7 (5-6) ◽  
pp. 475-486 ◽  
Author(s):  
G. Cassiani ◽  
A. Godio ◽  
S. Stocco ◽  
A. Villa ◽  
R. Deiana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document