Long-term trends in ocean chlorophyll: update from a Bayesian hierarchical space-time model

Author(s):  
Claudie Beaulieu ◽  
Matthew Hammond ◽  
Stephanie Henson ◽  
Sujit Sahu

<p>Assessing ongoing changes in marine primary productivity is essential to determine the impacts of climate change on marine ecosystems and fisheries. Satellite ocean color sensors provide detailed coverage of ocean chlorophyll in space and time, now with a combined record length of just over 20 years. Detecting climate change impacts is hindered by the shortness of the record and the long timescale of memory within the ocean such that even the sign of change in ocean chlorophyll is still inconclusive from time-series analysis of satellite data. Here we use a Bayesian hierarchical space-time model to estimate long-term trends in ocean chlorophyll. The main advantage of this approach comes from the principle of ”borrowing strength” from neighboring grid cells in a given region to improve overall detection. We use coupled model simulations from the CMIP5 experiment to form priors to provide a “first guess” on observational trend estimates and their uncertainty that we then update using satellite observations. We compare the results with estimates obtained with the commonly used vague prior, reflecting the case where no independent knowledge is available.  A global average net positive chlorophyll trend is found, with stronger regional trends that are typically positive in high and mid latitudes, and negative at low latitudes outside the Atlantic. The Bayesian hierarchical model used here provides a framework for integrating different sources of data for detecting trends and estimating their uncertainty in studies of global change.</p>

2022 ◽  
Vol 26 (1) ◽  
pp. 149-166
Author(s):  
Álvaro Ossandón ◽  
Manuela I. Brunner ◽  
Balaji Rajagopalan ◽  
William Kleiber

Abstract. Timely projections of seasonal streamflow extremes can be useful for the early implementation of annual flood risk adaptation strategies. However, predicting seasonal extremes is challenging, particularly under nonstationary conditions and if extremes are correlated in space. The goal of this study is to implement a space–time model for the projection of seasonal streamflow extremes that considers the nonstationarity (interannual variability) and spatiotemporal dependence of high flows. We develop a space–time model to project seasonal streamflow extremes for several lead times up to 2 months, using a Bayesian hierarchical modeling (BHM) framework. This model is based on the assumption that streamflow extremes (3 d maxima) at a set of gauge locations are realizations of a Gaussian elliptical copula and generalized extreme value (GEV) margins with nonstationary parameters. These parameters are modeled as a linear function of suitable covariates describing the previous season selected using the deviance information criterion (DIC). Finally, the copula is used to generate streamflow ensembles, which capture spatiotemporal variability and uncertainty. We apply this modeling framework to predict 3 d maximum streamflow in spring (May–June) at seven gauges in the Upper Colorado River basin (UCRB) with 0- to 2-month lead time. In this basin, almost all extremes that cause severe flooding occur in spring as a result of snowmelt and precipitation. Therefore, we use regional mean snow water equivalent and temperature from the preceding winter season as well as indices of large-scale climate teleconnections – El Niño–Southern Oscillation, Atlantic Multidecadal Oscillation, and Pacific Decadal Oscillation – as potential covariates for 3 d spring maximum streamflow. Our model evaluation, which is based on the comparison of different model versions and the energy skill score, indicates that the model can capture the space–time variability in extreme streamflow well and that model skill increases with decreasing lead time. We also find that the use of climate variables slightly enhances skill relative to using only snow information. Median projections and their uncertainties are consistent with observations, thanks to the representation of spatial dependencies through covariates in the margins and a Gaussian copula. This spatiotemporal modeling framework helps in the planning of seasonal adaptation and preparedness measures as predictions of extreme spring streamflows become available 2 months before actual flood occurrence.


2021 ◽  
Author(s):  
Álvaro Ossandón ◽  
Manuela I Brunner ◽  
Balaji Rajagopalan ◽  
William Kleiber

Abstract. Timely projections of seasonal streamflow extremes can be useful for the early implementation of annual flood risk adaptation strategies. However, predicting seasonal extremes is challenging particularly under non-stationary conditions and if extremes are connected in space. The goal of this study is to implement a space-time model for projection of seasonal streamflow extremes that considers the nonstationarity and spatio-temporal dependence of high flows. We develop a space-time model to project seasonal streamflow extremes for several lead times up to 2 months using a Bayesian Hierarchical Modelling (BHM) framework. This model is based on the assumption that streamflow extremes (3-day maxima) at a set of gauge locations are realizations of a Gaussian elliptical copula and generalized extreme value (GEV) margins with nonstationary parameters. These parameters are modeled as a linear function of suitable covariates from the previous season selected using the deviance information criterion (DIC). Finally, the copula is used to generate streamflow ensembles, which capture spatio-temporal variability and uncertainty. We apply this modelling framework to predict 3-day maximum flow in spring (May-June) at seven gauges in the Upper Colorado River Basin (UCRB) with 0 to 2 months lead time. In this basin, almost all extremes that cause severe flooding occur in spring as a result of snowmelt and precipitation. Therefore, we use regional mean snow water equivalent and temperature from the preceding winter season as well as indices of large-scale climate teleconnections – ENSO, AMO, and PDO – as potential covariates for 3-day maximum flow. Our model evaluation, which is based on the comparison of different model versions and the energy skill score, indicates that the model can capture the space-time variability of extreme flow well and that model skill increases with decreasing lead time. We also find that the use of climate variables slightly enhances skill relative to using only snow information. Median projections and their uncertainties are consistent with observations thanks to the representation of spatial dependencies through covariates in the margins and a Gaussian copula. This spatio-temporal modeling framework helps to plan seasonal adaptation and preparedness measures as predictions of extreme spring flows become available 2 months before actual flood occurrence.


2021 ◽  
Vol 58 (1) ◽  
pp. 42-67 ◽  
Author(s):  
Mads Stehr ◽  
Anders Rønn-Nielsen

AbstractWe consider a space-time random field on ${{\mathbb{R}^d} \times {\mathbb{R}}}$ given as an integral of a kernel function with respect to a Lévy basis with a convolution equivalent Lévy measure. The field obeys causality in time and is thereby not continuous along the time axis. For a large class of such random fields we study the tail behaviour of certain functionals of the field. It turns out that the tail is asymptotically equivalent to the right tail of the underlying Lévy measure. Particular examples are the asymptotic probability that there is a time point and a rotation of a spatial object with fixed radius, in which the field exceeds the level x, and that there is a time interval and a rotation of a spatial object with fixed radius, in which the average of the field exceeds the level x.


Author(s):  
Ye Yuan ◽  
Stefan Härer ◽  
Tobias Ottenheym ◽  
Gourav Misra ◽  
Alissa Lüpke ◽  
...  

AbstractPhenology serves as a major indicator of ongoing climate change. Long-term phenological observations are critically important for tracking and communicating these changes. The phenological observation network across Germany is operated by the National Meteorological Service with a major contribution from volunteering activities. However, the number of observers has strongly decreased for the last decades, possibly resulting in increasing uncertainties when extracting reliable phenological information from map interpolation. We studied uncertainties in interpolated maps from decreasing phenological records, by comparing long-term trends based on grid-based interpolated and station-wise observed time series, as well as their correlations with temperature. Interpolated maps in spring were characterized by the largest spatial variabilities across Bavaria, Germany, with respective lowest interpolated uncertainties. Long-term phenological trends for both interpolations and observations exhibited mean advances of −0.2 to −0.3 days year−1 for spring and summer, while late autumn and winter showed a delay of around 0.1 days year−1. Throughout the year, temperature sensitivities were consistently stronger for interpolated time series than observations. Such a better representation of regional phenology by interpolation was equally supported by satellite-derived phenological indices. Nevertheless, simulation of observer numbers indicated that a decline to less than 40% leads to a strong decrease in interpolation accuracy. To better understand the risk of declining phenological observations and to motivate volunteer observers, a Shiny app is proposed to visualize spatial and temporal phenological patterns across Bavaria and their links to climate change–induced temperature changes.


2013 ◽  
Vol 3 (12) ◽  
pp. 4183-4196 ◽  
Author(s):  
Maartje J. Klapwijk ◽  
György Csóka ◽  
Anikó Hirka ◽  
Christer Björkman

Sign in / Sign up

Export Citation Format

Share Document