scholarly journals A space-time Bayesian hierarchical modeling framework for projection of seasonal streamflow extremes

2021 ◽  
Author(s):  
Álvaro Ossandón ◽  
Manuela I Brunner ◽  
Balaji Rajagopalan ◽  
William Kleiber

Abstract. Timely projections of seasonal streamflow extremes can be useful for the early implementation of annual flood risk adaptation strategies. However, predicting seasonal extremes is challenging particularly under non-stationary conditions and if extremes are connected in space. The goal of this study is to implement a space-time model for projection of seasonal streamflow extremes that considers the nonstationarity and spatio-temporal dependence of high flows. We develop a space-time model to project seasonal streamflow extremes for several lead times up to 2 months using a Bayesian Hierarchical Modelling (BHM) framework. This model is based on the assumption that streamflow extremes (3-day maxima) at a set of gauge locations are realizations of a Gaussian elliptical copula and generalized extreme value (GEV) margins with nonstationary parameters. These parameters are modeled as a linear function of suitable covariates from the previous season selected using the deviance information criterion (DIC). Finally, the copula is used to generate streamflow ensembles, which capture spatio-temporal variability and uncertainty. We apply this modelling framework to predict 3-day maximum flow in spring (May-June) at seven gauges in the Upper Colorado River Basin (UCRB) with 0 to 2 months lead time. In this basin, almost all extremes that cause severe flooding occur in spring as a result of snowmelt and precipitation. Therefore, we use regional mean snow water equivalent and temperature from the preceding winter season as well as indices of large-scale climate teleconnections – ENSO, AMO, and PDO – as potential covariates for 3-day maximum flow. Our model evaluation, which is based on the comparison of different model versions and the energy skill score, indicates that the model can capture the space-time variability of extreme flow well and that model skill increases with decreasing lead time. We also find that the use of climate variables slightly enhances skill relative to using only snow information. Median projections and their uncertainties are consistent with observations thanks to the representation of spatial dependencies through covariates in the margins and a Gaussian copula. This spatio-temporal modeling framework helps to plan seasonal adaptation and preparedness measures as predictions of extreme spring flows become available 2 months before actual flood occurrence.

2022 ◽  
Vol 26 (1) ◽  
pp. 149-166
Author(s):  
Álvaro Ossandón ◽  
Manuela I. Brunner ◽  
Balaji Rajagopalan ◽  
William Kleiber

Abstract. Timely projections of seasonal streamflow extremes can be useful for the early implementation of annual flood risk adaptation strategies. However, predicting seasonal extremes is challenging, particularly under nonstationary conditions and if extremes are correlated in space. The goal of this study is to implement a space–time model for the projection of seasonal streamflow extremes that considers the nonstationarity (interannual variability) and spatiotemporal dependence of high flows. We develop a space–time model to project seasonal streamflow extremes for several lead times up to 2 months, using a Bayesian hierarchical modeling (BHM) framework. This model is based on the assumption that streamflow extremes (3 d maxima) at a set of gauge locations are realizations of a Gaussian elliptical copula and generalized extreme value (GEV) margins with nonstationary parameters. These parameters are modeled as a linear function of suitable covariates describing the previous season selected using the deviance information criterion (DIC). Finally, the copula is used to generate streamflow ensembles, which capture spatiotemporal variability and uncertainty. We apply this modeling framework to predict 3 d maximum streamflow in spring (May–June) at seven gauges in the Upper Colorado River basin (UCRB) with 0- to 2-month lead time. In this basin, almost all extremes that cause severe flooding occur in spring as a result of snowmelt and precipitation. Therefore, we use regional mean snow water equivalent and temperature from the preceding winter season as well as indices of large-scale climate teleconnections – El Niño–Southern Oscillation, Atlantic Multidecadal Oscillation, and Pacific Decadal Oscillation – as potential covariates for 3 d spring maximum streamflow. Our model evaluation, which is based on the comparison of different model versions and the energy skill score, indicates that the model can capture the space–time variability in extreme streamflow well and that model skill increases with decreasing lead time. We also find that the use of climate variables slightly enhances skill relative to using only snow information. Median projections and their uncertainties are consistent with observations, thanks to the representation of spatial dependencies through covariates in the margins and a Gaussian copula. This spatiotemporal modeling framework helps in the planning of seasonal adaptation and preparedness measures as predictions of extreme spring streamflows become available 2 months before actual flood occurrence.


2020 ◽  
Author(s):  
Claudie Beaulieu ◽  
Matthew Hammond ◽  
Stephanie Henson ◽  
Sujit Sahu

<p>Assessing ongoing changes in marine primary productivity is essential to determine the impacts of climate change on marine ecosystems and fisheries. Satellite ocean color sensors provide detailed coverage of ocean chlorophyll in space and time, now with a combined record length of just over 20 years. Detecting climate change impacts is hindered by the shortness of the record and the long timescale of memory within the ocean such that even the sign of change in ocean chlorophyll is still inconclusive from time-series analysis of satellite data. Here we use a Bayesian hierarchical space-time model to estimate long-term trends in ocean chlorophyll. The main advantage of this approach comes from the principle of ”borrowing strength” from neighboring grid cells in a given region to improve overall detection. We use coupled model simulations from the CMIP5 experiment to form priors to provide a “first guess” on observational trend estimates and their uncertainty that we then update using satellite observations. We compare the results with estimates obtained with the commonly used vague prior, reflecting the case where no independent knowledge is available.  A global average net positive chlorophyll trend is found, with stronger regional trends that are typically positive in high and mid latitudes, and negative at low latitudes outside the Atlantic. The Bayesian hierarchical model used here provides a framework for integrating different sources of data for detecting trends and estimating their uncertainty in studies of global change.</p>


2020 ◽  
Author(s):  
WILLIAM KLEIBER ◽  
Álvaro Ossandón ◽  
Balaji Rajagopalan ◽  
Manuela Brunner

2021 ◽  
Vol 58 (1) ◽  
pp. 42-67 ◽  
Author(s):  
Mads Stehr ◽  
Anders Rønn-Nielsen

AbstractWe consider a space-time random field on ${{\mathbb{R}^d} \times {\mathbb{R}}}$ given as an integral of a kernel function with respect to a Lévy basis with a convolution equivalent Lévy measure. The field obeys causality in time and is thereby not continuous along the time axis. For a large class of such random fields we study the tail behaviour of certain functionals of the field. It turns out that the tail is asymptotically equivalent to the right tail of the underlying Lévy measure. Particular examples are the asymptotic probability that there is a time point and a rotation of a spatial object with fixed radius, in which the field exceeds the level x, and that there is a time interval and a rotation of a spatial object with fixed radius, in which the average of the field exceeds the level x.


2016 ◽  
Vol 54 (11) ◽  
pp. 6659-6673 ◽  
Author(s):  
Zhihui Xin ◽  
Guisheng Liao ◽  
Zhiwei Yang ◽  
Yuhong Zhang ◽  
Hongxing Dang

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Peter Riggs

The Gödel space-time model displays an intrinsic rotation of matter, which is responsible for some fascinating characteristics. It is a theoretical model of a possible, though not the actual, universe.


Author(s):  
Alexander Shamailovich Avshalumov

Since the creation of GR and subsequent works in cosmology, the question of the curvature of space in the Universe is considered one of the most important and debated to this day. This is evident, because the curvature of space depends whether the Universe expands, contracts or is static. These discussions allowed the author to propose a paradoxical idea: simultaneous existence in the Universe of three interconnected space-times (positive, negative and zero curvature) and on this basis, to develop a theory in which each space-time plays its own role and develops in a strict accordance with its sign of curvature. The three space-time model of the structure of the Universe, proposed by the author, allows to solve many fundamental problems of modern cosmology and theoretical physics and creates the basis for building a unified physical theory (including one that unites GR and quantum physics).


Sign in / Sign up

Export Citation Format

Share Document