Effects of intermittency and land use on the in-stream phosphorus and organic carbon uptake

Author(s):  
Gabriele Weigelhofer ◽  
Matthias Pucher

<p>Understanding the consequences of the interplay between land use and climate change is among the most pressing challenges of the 21<sup>st</sup> century for river managers. Over the past decades, agricultural land use has altered nutrient concentrations and stoichiometric ratios in stream ecosystems, thereby affecting aquatic biogeochemical cycles and the coupling among carbon, phosphorus, and nitrogen. In addition, the frequency and duration of droughts has increased dramatically across Europe, causing perennial streams to shift to intermittency and changing the capacity of sediments for the uptake and storage of macronutrients.</p><p>Our study aims to understand the effects of drying and re-wetting on the uptake, storage, and release of phosphorus and organic carbon from the benthic and the hyporheic zone of headwater streams under the additional stressor of agricultural land use. In specific, we are interested in the potential coupling and decoupling of phosphorus and dissolved organic carbon cycling in autotrophic and heterotrophic benthic biofilms. We sampled headwater streams before, during, and after the dry period in 2018 and 2019 and performed laboratory experiments with artificial drying and re-wetting and additions of dissolved organic carbon. We measured nutrient uptake and release, microbial biomass, respiration, and the activity of extra-cellular enzymes. The first results show an increased phosphorus release from the sediments immediately after re-wetting, foolowed by a reduced uptake capacity. The uptake of DOC was correlated with phosphorus in autotrophic biofilms, but not in heterotrophic ones.</p>

2019 ◽  
Vol 30 (15) ◽  
pp. 1875-1885 ◽  
Author(s):  
Youlin Luo ◽  
Qiquan Li ◽  
Jie Shen ◽  
Changquan Wang ◽  
Bing Li ◽  
...  

2020 ◽  
Author(s):  
Andrew Tweedie ◽  
Philip M. Haygarth ◽  
Anthony Edwards ◽  
Allan Lilly ◽  
Nikki Baggaley ◽  
...  

<p>The use of phosphorus (P) fertilizer has been one of the defining contributors to productive agriculture since the green revolution during the middle of the last century. However, these increased yields have come at the cost of dependency upon the declining resources of P rock reserves and eutrophication of water bodies downstream. In this context, it is important to understand the long-term effects of these P fertilizer additions on soil chemistry over ~50 years in order explain past and current patterns in fertilizer usage and so to better inform future soil management.</p><p>We tested the hypothesis that phosphorus forms and availability in mixed use (arable and grazed) agricultural soil have changed over a period of 50 to 80 years of agricultural intensification. Spatially matched samples of soil from 34 agricultural sites in North East (NE) Scotland were collected at two timepoints. The first samples were taken between 1951 and 1981 and in all cases the resampling took place in the autumn of 2017. The soils sampled were representative of agricultural soils in NE Scotland.</p><p>The hypothesis was tested by employing a range of soil tests on the ‘old’ and ‘new’ time points.  These included water extraction for inorganic and organic P, nitrate and ammonium and dissolved organic carbon, acid ammonium oxalate extraction to investigate the soil P exchange complex and NaOH-EDTA extraction as a strong alkaline extractant which preserves organic P forms. Analysis by <sup>31</sup>P NMR was conducted on the NaOH-EDTA extracts from 5 pairs of samples, to investigate the organic P chemistry of in greater detail.</p><p>Phosphorus concentrations for stronger extractants (NaOH-EDTA, acid ammonium oxalate) did not increase significantly (P<0.05) over time. However, water extraction results showed increases in total P (P<0.01) and inorganic P but decreases in organic P. Additionally, analysis by <sup>31</sup>P NMR detected changes between timepoints in α-glycero-phosphate and pyrophosphate.</p><p>These results indicate that differences in the various chemical forms of P present in soil between the timepoints can be detected many decades apart. This indicates changes in the functioning of the P cycle in these soils under intensive agricultural land use over time. Knowledge of the P-cycling response of soils under agricultural land-use over decades provides an opportunity to understand changes in soil nutrient concentrations, balances and availability and inform studies seeking to improve the sustainable management of soil fertility.</p>


2021 ◽  
Author(s):  
Paula Altieri ◽  
Carolina Ocon ◽  
Roberto Jensen ◽  
Alberto Rodrigues Capítulo

Abstract The aim of this study was to investigate the effects of agricultural land use and periods of hydrological variability on the environmental variables, as well as macrophyte and macroinvertebrate assemblages in lowland riverine wetlands. We compared two wetlands with intensive agricultural land use against two others with extensive livestock considered references for the region during a normal and a dry flow period. Nutrient concentrations were significantly higher in agricultural riverine wetlands. These wetlands exhibited higher relative coverage of floating anchored macrophytes and the absence of submerged vegetation. They showed significantly lower taxonomic richness and density of macroinvertebrates and a higher relative abundance of scrapers and predators. Wetlands of both land uses had a lower total density of macroinvertebrates and a higher proportion of tolerant desiccation taxa in the dry period. Particular differences between land uses, such as lower dissolved oxygen concentrations and lower macroinvertebrate diversity in agricultural wetlands, were found during the dry period. These findings indicate that the differences between land uses increased during the aforementioned period. This study provides evidence of the effects of the surrounding landscape and hydrologic periods in the environmental characteristics as well as the macrophyte and macroinvertebrate assemblages of the riverine wetlands studied.


2013 ◽  
Vol 30 (4) ◽  
pp. 476-493 ◽  
Author(s):  
A. G. Yates ◽  
R. B. Brua ◽  
J. Corriveau ◽  
J. M. Culp ◽  
P. A. Chambers

Author(s):  
B. O. Adebo ◽  
A. O. Aweto ◽  
K. Ogedengbe

Soil quality in an agroecosytem is considerably influenced by land use and management practices. Twenty two potential soil quality indicators were used to assess the effects of five different land use types (arable land, plantation, agroforestry, marginal land and native forest) on soil quality in Akufo and Atan farm settlements in Ibadan, southwestern Nigeria. A total of sixty-two fields were selected from which soil samples were taken at a depth of 0-15 cm and subjected to laboratory analysis. Majority of the evaluated physicochemical properties varied significantly among the land uses and whereas native land performed relatively better for most of the observed attributes, arable and marginal lands performed worse. Due to the moderate to strong significant correlation among the potential indicators, they were subjected to principal component analysis and only seven indicators were selected to compute the soil quality index (SQI). In both Akufo and Atan, native land had the highest SQI (0.8250 and 0.860 respectively) which was significantly different (P = .05) from all the agricultural land uses, except plantation (0.739 and 0.750 respectively). Whereas marginal field in Atan was most degraded (SQI = 0.455), it was closely followed by arable fields in both locations. This study indicates that the current agricultural land use and soil management practices in Akufo and Atan farm settlements have negatively impacted soil quality; however, the degree of degradation was strongly influenced by the concentration of soil organic carbon in the understudied land use systems. It also emphasizes the need to promote the use of sustainable management practices among agricultural land users, so as to increase soil organic carbon stock, and improve soil quality and land productivity.


Sign in / Sign up

Export Citation Format

Share Document