agricultural wetlands
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Paula Altieri ◽  
Carolina Ocon ◽  
Roberto Jensen ◽  
Alberto Rodrigues Capítulo

Abstract The aim of this study was to investigate the effects of agricultural land use and periods of hydrological variability on the environmental variables, as well as macrophyte and macroinvertebrate assemblages in lowland riverine wetlands. We compared two wetlands with intensive agricultural land use against two others with extensive livestock considered references for the region during a normal and a dry flow period. Nutrient concentrations were significantly higher in agricultural riverine wetlands. These wetlands exhibited higher relative coverage of floating anchored macrophytes and the absence of submerged vegetation. They showed significantly lower taxonomic richness and density of macroinvertebrates and a higher relative abundance of scrapers and predators. Wetlands of both land uses had a lower total density of macroinvertebrates and a higher proportion of tolerant desiccation taxa in the dry period. Particular differences between land uses, such as lower dissolved oxygen concentrations and lower macroinvertebrate diversity in agricultural wetlands, were found during the dry period. These findings indicate that the differences between land uses increased during the aforementioned period. This study provides evidence of the effects of the surrounding landscape and hydrologic periods in the environmental characteristics as well as the macrophyte and macroinvertebrate assemblages of the riverine wetlands studied.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 69
Author(s):  
Il-Kook Park ◽  
Daesik Park ◽  
Amaël Borzée

Numerous amphibian species are declining because of habitat loss and fragmentation due to urbanization of landscapes and the construction of roads. This is a mounting threat to species restricted to habitats close to urban areas, such as agricultural wetlands in North East Asia. The Suweon treefrog (Dryophytes suweonensis) falls into the list of species threatened with habitat loss and most populations are under threat of extirpation. Over the last decades, sub-populations have become increasingly disconnected and specifically the density of paved roads has increased around the only site connecting northern and southern Seoul populations. We surveyed this locality in Hojobeol, Siheung, Republic of Korea in 2012, 2015 and 2019 to first confirm the decline in the number of sites where D. suweonensis was present. The second objective was to analyze the habitat characteristics and determine the remaining suitable habitat for D. suweonensis through a species distribution model following the maximum entropy method. Our results show that rice paddy cover and distance from the paved road are the most important factor defining suitable habitat for D. suweonensis. At this locality, uninterrupted rice paddies are a suitable habitat for the species when reaching at least 0.19 km2, with an average distance of 138 ± 93 m2 from the roads. We link the decrease in the number of sites where D. suweonensis is present with the decrease in rice paddy cover, generally replaced by localized infrastructures, greenhouses and habitat fragmentation. Rice paddies should remain connected over a large area for the protection of the remaining populations. In addition, habitat requirements should be integrated in the requisites to designate protected areas.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8755
Author(s):  
Adrian Kannan ◽  
Suganiya Rama Rao ◽  
Shyamala Ratnayeke ◽  
Yoon-Yen Yow

Invasive apple snails, Pomacea canaliculata and P. maculata, have a widespread distribution globally and are regarded as devastating pests of agricultural wetlands. The two species are morphologically similar, which hinders species identification via morphological approaches and species-specific management efforts. Advances in molecular genetics may contribute effective diagnostic tools to potentially resolve morphological ambiguity. DNA barcoding has revolutionized the field of taxonomy by providing an alternative, simple approach for species discrimination, where short sections of DNA, the cytochrome c oxidase subunit I (COI) gene in particular, are used as ‘barcodes’ to delineate species boundaries. In our study, we aimed to assess the effectiveness of two mitochondrial markers, the COI and 16S ribosomal deoxyribonucleic acid (16S rDNA) markers for DNA barcoding of P. canaliculata and P. maculata. The COI and 16S rDNA sequences of 40 Pomacea specimens collected from six localities in Peninsular Malaysia were analyzed to assess their barcoding performance using phylogenetic methods and distance-based assessments. The results confirmed both markers were suitable for barcoding P. canaliculata and P. maculata. The phylogenies of the COI and 16S rDNA markers demonstrated species-specific monophyly and were largely congruent with the exception of one individual. The COI marker exhibited a larger barcoding gap (6.06–6.58%) than the 16S rDNA marker (1.54%); however, the magnitude of barcoding gap generated within the barcoding region of the 16S rDNA marker (12-fold) was bigger than the COI counterpart (approximately 9-fold). Both markers were generally successful in identifying P. canaliculata and P. maculata in the similarity-based DNA identifications. The COI + 16S rDNA concatenated dataset successfully recovered monophylies of P. canaliculata and P. maculata but concatenation did not improve individual datasets in distance-based analyses. Overall, although both markers were successful for the identification of apple snails, the COI molecular marker is a better barcoding marker and could be utilized in various population genetic studies of P. canaliculata and P. maculata.


2020 ◽  
Vol 28 (3) ◽  
pp. 612-622 ◽  
Author(s):  
Sarah G. Winikoff ◽  
Daniel J. Larkin ◽  
Shana L. Meier ◽  
Jacques C. Finlay

2020 ◽  
Vol 256 ◽  
pp. 109971
Author(s):  
Sarah Treby ◽  
Paul E. Carnell ◽  
Stacey M. Trevathan-Tackett ◽  
Giuditta Bonetti ◽  
Peter I. Macreadie

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2626 ◽  
Author(s):  
Xiaojun Song ◽  
Per Magnus Ehde ◽  
Stefan E. B. Weisner

Excess nitrogen (N) from agricultural runoff is a cause of pollution in aquatic ecosystems. Created free water surface (FWS) wetlands can be used as buffering systems to lower the impacts of nutrients from agricultural runoff. The purpose of this paper was to evaluate critical factors for N removal in FWS wetlands receiving high nitrate (NO3−) loads from agriculture. The study was performed in 12 experimental FWS wetlands in southern Sweden, receiving drainage water from an agricultural field area. The effects of water depth (mean depth of 0.4 m and 0.6 m, respectively) and phosphorus (P) availability (with or without additional P load) were investigated from July to October. The experiment was performed in a two-way design, with three wetlands of each combination of depth and P availability. The effects of P availability on the removal of NO3− and total N were strongly significant, with higher absolute N removal rates per wetland area (g m−2 day−1) as well as temperature-adjusted first-order area-based removal rate coefficients (Kat) in wetlands with external P addition compared to wetlands with no addition. Further, higher N removal in deep compared to shallow wetlands was indicated by statistically significant differences in Kat. The results show that low P availability may limit N removal in wetlands receiving agricultural drainage water. Furthermore, the results support that not only wetland area but also wetland volume may be important for N removal. The results have implications for the planning, location, and design of created wetlands in agricultural areas.


Sign in / Sign up

Export Citation Format

Share Document